Project Details
Projekt Print View

SFB 840:  From Particulate Nanosystems to Mesotechnology

Subject Area Chemistry
Materials Science and Engineering
Physics
Term from 2009 to 2021
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 79971943
 
Final Report Year 2022

Final Report Abstract

The grand challenges of our time - sustainability, climate-neutral production of goods and energy, clean air and water, a fair use of resources for all generations, safer nutrition for an ever-growing world population, and an efficient, high-performance healthcare system serving an aging society, to name just a few - can only be addressed with fundamental, knowledge-driven research. These complex issues cannot be solved by better engineering alone, rather a major contribution must come from innovative new materials. Being highly crosssectional, chemistry will be a key discipline in this challenge. Chemists are not only able to provide the necessary components, but are also able to develop the necessary design principles and to integrate the components with regard to the desired functions across all length scales. The Bayreuth CRC 840 was set up to address these challenges of our time and it has made significant contributions to the development of new materials that could potentially be useful in solving global problems. We started out with two core hypotheses in mind: 1. Nanotechnology has established itself as a cross-sectional discipline in science and technology and is now widely recognized as a key technology of the 21st century. However, compared to the large and still increasing number of publications on the synthesis of nanoparticles, nanostructures and nanotechnology, with the technological potential of such materials demonstrated therein, the number of actual established applications is disappointingly small. Despite thousands of start-up companies founded worldwide, the success rate so far remains sobering. Upon closer inspection, the established products are not even true nanomaterials, but rather represent process-related agglomerates. Bridging the gap between the nano- and the macro-world by means of a relatively controlled assembly proves to be essential for commercial use. This appears even more true as this forward integration also makes it possible to mitigate the potential risks of this material class, in response to the growing nano-related environmental and health concerns from regulatory authorities, politicians, and society. 2 Aside from these issues, and most interestingly, the controlled assembly of nanoparticles gives access to a broad range of technologically relevant material properties that are not observable at the nanoscale but only emerge at the next higher length and complexity scale. Examples of such emerging, "meso-immanent" material properties that have been investigated in this CRC are collective optical properties such as complete optical band gaps in colloidal quasicrystals, plasmonic coupling effects, or the nonlinear reduction of permeability and water vapor sensitivity of one-dimensional crystalline, Bragg-stack type nanocomposite barrier films with increasing filler content. To unlock the potential of mesotechnology, the significant progress made in nanotechnology in recent years regarding the controlled synthesis of nanoparticulate building blocks (materials and components) had to be complemented by the integration of these building blocks into systems whose collective meso-properties make new applications accessible. Only this mesotechnology establishes the crucial interface between the nanoscopic and the macroscopic world. This integration of nanoscale building blocks into functional, often hierarchically-structured, complex units require, based on a deep fundamental understanding, the concerted development and mastery of synthesis, assembly, and characterization methods that are accompanied by simulation or theory on all relevant length scales (molecular, colloidal, mesoscopic and macroscopic). The development of this essential scientific foundation for mesotechnology was decisively advanced in the CRC 840.

Publications

  • 3D Brownian Diffusion of Submicron- Sized Particle Clusters. ACS Nano 2009, 3, 3326-3334
    Hoffmann M., Wagner C.S., Harnau L., Wittemann A.
    (See online at https://doi.org/10.1021/nn900902b)
  • Adsorption of β- Lactoglobulin on spherical polyelectrolyte brushes: Direct proof of counterion release by Isothermal Titration Calorimetry. J. Am. Chem. Soc. 2010, 132, 3159-3163
    Henzler K., Haupt B., Lauterbach K., Wittemann A., Borisov O., Ballauff M.
    (See online at https://doi.org/10.1021/ja909938c)
  • Barrier Properties of Synthetic Clay with a Kilo-Aspect Ratio. Adv. Mater. 2010, 22, 5245-5249
    Möller M.W., Lunkenbein T., Kalo H., Schieder M., Kunz D.A., Breu, J.
    (See online at https://doi.org/10.1002/adma.201002559)
  • Shifting the Equilibrium between the Encounter State and the Specific Form of a Protein Complex by Interfacial Point Mutations. J. Am. Chem. Soc. 2010, 132, 11487-11495
    Volkov A., Bashir Q., Worrall J.A.R., Ullmann M., Ubbink M.
    (See online at https://doi.org/10.1021/ja100867c)
  • General Pathway toward Crystalline-core Micelles with Tunable Morphology and Corona Segregation. ACS Nano 2011, 5, 9523-9534
    Schmelz J., Karg M., Hellweg T., Schmalz H.
    (See online at https://doi.org/10.1021/nn202638t)
  • Self-Assembly of Tunable Nanocrystal Superlattices using Poly-(NIPAM) Spacers. Adv. Funct. Mater. 2011, 21, 4668-4676
    Karg M., Hellweg T., Mulvaney P.
    (See online at https://doi.org/10.1002/adfm.201101115)
  • Water-Absorbent Edge-Modified-Clay Linked Polymers. US201113326373 (2011)
    Lindner T., Meyer A., Moeller M., Breu J., Stirner M.
  • Water-Absorbent Surface-Modified-Clay Linked Polymers. US201113326376 (2011)
    Lindner T., Meyer A., Moeller M., Breu J., Stirner M.
  • Cavitation Engineered 3D Sponge Networks and Their Application in Active Surface Construction. Adv. Mater. 2012, 24, 985-989
    Gensel J., Borke T., Pazos-Pérez N.P., Fery A., Andreeva D.V., Betthausen E., Müller A.H.E., Möhwald H., Skorb E.V.
    (See online at https://doi.org/10.1002/adma.201103786)
  • Organized Plasmonic Clusters with High Coordination Number and Extraordinary Enhancement in Surface-Enhanced Raman Scattering (SERS). Angew. Chem. Int. Ed. 2012, 51, 12688-12693
    Pazos-Perez N., Wagner C.S., Romo-Herrera J.M., Liz-Marzán L.M., Garcia de Abajo F.J., Wittemann A., Fery A., Alvarez-Puebla R.A.
    (See online at https://doi.org/10.1002/anie.201207019)
  • Sonochemical Activation of AI/Ni Hydrogenation Catalyst. Adv. Funct. Mater. 2012, 22, 3128-3135
    Dulle J., Nemeth S., Skorb E.V., Irrgang T., Senker J., Kempe R., Fery A., Andreeva-Bäumler D.
    (See online at https://doi.org/10.1002/adfm.201200437)
  • UV-Cured, Flexible, and Transparent Nanocomposite-Coating with Remarkable Oxygen Barrier. Adv. Mater. 2012, 24, 2142-2147
    Möller M.W., Kunz D.A., Lunkenbein T., Sommer S., Nennemann A., Breu J.
    (See online at https://doi.org/10.1002/adma.201104781)
  • Colloidal Surface Assemblies: Nanotechnology Meets Bioinspiration. Adv. Funct. Mater. 2013, 23, 4529-4541
    Kraus T., Brodoceanu D., Pazos-Perez N., Fery A.
    (See online at https://doi.org/10.1002/adfm.201203885)
  • Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 2013, 503, 247-251
    Gröschel A.H., Walther A., Löbling T.I., Schacher F.H., Schmalz H., Müller A.H.E.
    (See online at https://doi.org/10.1038/nature12610)
  • Macroscopic Vertical Alignment of Nanodomains in Thin Films of Semiconductor Amphiphilic Block Copolymers. ACS Nano 2013, 7, 6069-6078
    Brendel J.C., Liu F., Lang A.S., Russel T.P.H., Thelakkat M.
    (See online at https://doi.org/10.1021/nn401877g)
  • Space-Resolved In-Plane Moduli of Graphene Oxide and Chemically Derived Graphene Applying a Simple Wrinkling Procedure. Adv. Mater. 2013, 25, 1337-1341
    Kunz D.A., Feicht P., Gödrich S., Thurn H., Papastavrou G., Fery A., Breu J.
    (See online at https://doi.org/10.1002/adma.201204049)
  • Biomimetic Fibers Made of Recombinant Spidroins with the Same Toughness as Natural Spider Silk. Adv. Mater. 2015, 27, 2189-2194
    Heidebrecht A., Eisoldt L., Diehl J., Schmidt A., Geffers M, Lang G., Scheibel T.
    (See online at https://doi.org/10.1002/adma.201404234)
  • Colloidal self-assembly concepts for light management in photovoltaics. Mater. Today 2015, 18, 185-205
    König T.A.F., Stelling C., Reichstein P.M., Honold T., Thelakkat M., Retsch M., Karg M.
    (See online at https://doi.org/10.1016/j.mattod.2014.10.036)
  • High Bulk Electron Mobility Diketopyrrolopyrrole Copolymers with Perfluorothiophene. Adv. Funct. Mater. 2015, 25, 2725-2736
    Mueller C.J.: Singh C.R., Fried M., Huettner S., Thelakkat M.
    (See online at https://doi.org/10.1002/marc.201100327)
  • Polymer/Nanoparticle Hybrid Materials of Precise Dimensions by Size-Exclusive Fishing of Metal Nanoparticles. Adv. Mater. 2015, 27, 3888-3893
    Fan Z., Köhn Serrano M., Schaper, A., Agarwal S., Greiner A.
    (See online at https://doi.org/10.1002/adma.201501306)
  • Time-Controlled Colloidal Superstructures: Long- Range Plasmon Resonance Coupling in Particle Monolayers. Adv. Mater. 2015, 27, 7332-7337
    Volk K., Fitzgerald J.P.S., Retsch M., Karg M.
    (See online at https://doi.org/10.1002/adma.201503672)
  • Ultralight, Soft Polymer Sponges by Self-Assembly of Short Electrospun Fibers in Colloidal Dispersions. Adv. Funct. Mater. 2015, 25, 2850-2856
    Duan G., Jiang S., Jérôme V., Wendorff J.H., Fathi A., Uhm J., Altstädt V., Herling M., Breu J., Freitag R., Agarwal S., Greiner A.
    (See online at https://doi.org/10.1002/adfm.201500001)
  • Unusual and Superfast Temperature-Triggered Actuators. Adv. Mater. 2015, 27, 4865-4870
    Jiang S., Liu F., Lerch A., Ionov L., Agarwal S.
    (See online at https://doi.org/10.1002/adma.201502133)
  • Controlled Exfoliation of Layered Silicate Heterostructures into Bilayers and Their Conversion into Giant Janus Platelet. Angew. Chem. Int. Ed. 2016, 55, 7398-7402
    Stöter M., Gödrich S., Feicht P., Rosenfeldt S., Thurn H., Neubauer J.W., Seuss M., Lindner P., Kalo H., Möller M., Fery A., Förster S., Papastavrou G., Breu J.
    (See online at https://doi.org/10.1002/anie.201601611)
  • Giving Direction to Motion and Surface with Ultra-Fast Speed Using Oriented Hydrogel Fibers. Adv. Funct. Mater. 2016, 26 1021-1027
    Liu L., Jiang S., Sun Y., Agarwal S.
    (See online at https://doi.org/10.1002/adfm.201503612)
  • One-Component Dual Actuation: Poly(NIPAM) Can Actuate to Stable 3D Forms with Reversible Size Change. Adv. Mater. 2016, 28 9792-9796
    Liu L., Ghaemi A., Gekle S., Agarwal S.
    (See online at https://doi.org/10.1002/adma.201603677)
  • Single-catalyst highweight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia. Nature Commun. 2016, 7, 13201, 1-6
    Forberg D., Schwob T., Zaheer M., Friedrich M., Miyajima N., Kempe R.
    (See online at https://doi.org/10.1038/ncomms13201)
  • Verfahren zur Herstellung eines offenzelligen Polymerschaums. DE102011083434 B4, Patent erteilt am 17.11.2016
    Altstädt V. Kersch M., Stumpf M., Schmidt H.-W.
  • Clinical Wastewater Treatment: Photochemical Removal of an Anionic Antibiotic (Ciprofloxacin) by Meso-structured High Aspect Ratio ZnO Nanotubes. Appl. Catal. B 2017, 204, 561-565
    Bojer C., Schöbel J., Martin T., Ertl M., Schmalz H., Breu J.
    (See online at https://doi.org/10.1016/j.apcatb.2016.12.003)
  • Constant Volume Gate-Opening by Freezing Rotational Dynamics in 2 Microporous Organically Pillared Layered Silicates. J. Am. Chem. Soc. 2017, 139, 904-909
    Bärwinkel K., Herling M.M., Rieß M., Sato H., Li L., Avadhut Y.S., Kemnitzer T.W., Kalo H., Senker J., Matsuda R., Kitagawa S., Breu J.
    (See online at https://doi.org/10.1021/jacs.6b11124)
  • Mesoscale Polarization by Geometric Frustration in Columnar Supramolecular Crystals. Angew. Chem. Int. Ed. 2017, 139, 4432-4437
    Zehe C., Hill J.A., Funell N.P., Kreger K., van der Zwan K., Goodwin A.L., Schmidt H.-W., Senker J.
    (See online at https://doi.org/10.1002/anie.201612122)
  • Biomedical Applications of Recombinant Silk‐Based Materials. Adv. Mater. 2018, 30,1704636, 1-28
    Aigner T.B.; DeSimone E.; Scheibel T.
    (See online at https://doi.org/10.1002/adma.201704636)
  • Combining 3D Printing with Electrospinning for Rapid Response and Enhanced Designability of Hydrogel Actuators. Adv. Funct. Mater. 2018, 28, 1800514, 1-7
    Chen T., Bakhshi H., Liu L., Ji J., Agarwal, S.
    (See online at https://doi.org/10.1002/adfm.201800514)
  • Dielectric Screening Meets Optimally Tuned Density Functionals. Adv. Mater. 2018, 30, 1706560, 1-14
    Kronik L.; Kümmel S.
    (See online at https://doi.org/10.1002/adma.201706560)
  • Probing Interactions of N-Donor Molecules with Open Metal Sites within Paramagnetic Cr-MIL-101: A Solid-State NMR Spectroscopic and Density Functional Theory Study. J. Am. Chem. Soc. 2018, 6, 2135-2144
    Wittman T., Mondal A., Tschense C.B.L., Wittmann J.J., Klimm O., Siegel R., Corzilius B., Kaupp M., Weber B., Senker J.
    (See online at https://doi.org/10.1021/jacs.7b10148)
  • Aqueous coating compositions containing polymer dispersion with low electrical conductivity and phyllosilicates for oxygen barrier coatings. US20190136082A1 (2019)
    Pietsch I., Roschmann K., Tonhauser C., Georgieva K., Breu J., Feicht P.
  • Atomic insight into hydration shells around facetted nanoparticles. Nature Commun. 2019, 10, 995, 1-7
    Thomä S.L.J., Krauss S.W., Eckardt M., Chater P., Zobel M.
    (See online at https://doi.org/10.1038/s41467-019-09007-1)
  • General synthesis of primary amines via reductive amination employing a reusable nickel catalyst. Nature Catal. 2019, 2, 71-77
    Hahn G., Kunnas P., deJonge N., Kempe R.
    (See online at https://doi.org/10.1038/s41929-018-0202-6)
  • Mesostructured Nonwovens with Penguin Downy Feather‐Like Morphology—Top‐Down Combined with Bottom‐Up. Adv. Funct. Mater. 2019, 29, 1903166, 1-7
    Burgard M., Weiss D., Kreger K., Schmalz H., Agarwal S., Schmidt H.-W., Greiner A.
    (See online at https://doi.org/10.1002/adfm.201903166)
  • Sheet silicate lamellae with a high aspect ratio. U.S. Patent Application Nr. 16/482,328 (2019)
    Kalo H., Breu J., Stöter M., Daab M.
  • Compositions containing polyanion, ethoxylated cationic polymer and phyllosilicates for improved oxygen barrier coatings. USO10570306B2 (2020)
    Pietsch I., Roschmann K., Deeter G., McGuire M., Feller R., Breu J., Kalo H.
  • Distributed Electric Field Induces Orientations of Nanosheets to Prepare Hydrogels with Elaborate Ordered Structures and Programmed Deformations. Adv. Mater. 2020, 32, 2005567, 1-8
    Zhu Q.L., Dai C.F., Wagner D., Daab M., Hong W., Breu J., Zheng Q., Wu Z.L.
    (See online at https://doi.org/10.1002/adma.202005567)
  • Engineered spider silk-based 2D and 3D materials prevent microbial infestation. Mater. Today 2020, 41, 21-33
    Kumari S., Lang G., DeSimone E., Spengler C., Trossmann V., Lücker S., Hudel M., Jacobs K., Krämer N., Scheibel T.
    (See online at https://doi.org/10.1016/j.mattod.2020.06.009)
  • Expanded Analogs of Three‐Dimensional Lead‐Halide Hybrid Perovskites. Angew. Chem. Int. Ed. 2020, 59, 19087-19094
    Umeyama D., Leppert L., Connor B.A., Manumpil M.A., Neaton J.B., Karunadasa H.
    (See online at https://doi.org/10.1002/anie.202005012)
  • A process for delamination of layered silicates. U.S. Patent Application Nr. 16/966,929 (2021)
    Daab M., Breu J., Schiessling H., Kalo H.
  • Interplay of Different Major Ampullate Spidroins during Assembly and Implications for Fiber Mechanics. Adv. Mater. 2021, 33, 2006499, 1-8
    Saric M. Eisoldt L., Döring V., Scheibel T.
    (See online at https://doi.org/10.1002/adma.202006499)
  • Method for preparing a hydrophobically modified clay. US010920042B2 (2021)
    Misiak H., Neitzke D., Huebner C., Kinzelmann H., Zhao L., Breu J., Edenharter A., Amschler S.
  • One-component aqueous coating containing polyurethane and phyllosilicates for oxygenbarrier coatings. US011136463B2 (2021)
    Pietsch I., Roschmann K., Tonhauser C., Georgieva K., Breu J., Feicht P.
  • Patterned Electrode Assisted One-Step Fabrication of Biomimetic Morphing Hydrogels with Sophisticated Anisotropic Structures. Adv. Sci. 2021, 8, 2102353
    Zhu Q.L., Dai C.F., Wagner D., Khoruzhenko O., Hong W., Breu J., Zheng Q., Wu Z.L.
    (See online at https://doi.org/10.1002/advs.202102353)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung