Detailseite
Projekt Druckansicht

Echtzeit regelungstechnik für Laserablation auf Basis volumetrischer optoakustischer Bildgebung

Fachliche Zuordnung Medizinische Physik, Biomedizinische Technik
Förderung Förderung von 2015 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 279589762
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

Therapeutic interventions based on thermal ablation are commonly employed medical procedures for annihilating malignant tumors and treating other disorders that require selective tissue targeting. Although thermal ablation presents important advantages with respect to alternative therapeutic options, the lack of haptic feedback during ablative treatments remains a major drawback. As a consequence, clinical interventions commonly result in a high number of undesired outcomes, excessive collateral damage to healthy tissues or ineffective treatments that need to be repeated. In this project, we investigated on the feasibility of using optoacoustics, a fast-growing biomedical imaging and sensing modality, to provide real-time feedback during thermal ablation and to assess the outcome of these procedures. In this context, two types of ablation treatments were studied, namely laser surgery, aimed to generate incisions replacing traditional scalpels, and thermal therapies using variety energy sources, such as photothermal, focused ultrasound and radiofrequency current. Mathematical models of thermal diffusion as well as new hardware configurations based on air-coupled transducers and radio-frequency catheters were further developed in order to fully exploit the optoacoustic monitoring capabilities. The experimental results achieved during this project indicate the powerful performance of optoacoustics as a real-time feedback tool providing quantitative readings of the critical ablation parameters during thermal ablation procedures. In particular, feasibility of noncontact optoacoustic monitoring of incision depth in laser surgery has been demonstrated. We further develop new algorithms to compute volumetrically the temperature distribution in real-time from temperature-induced OA signal increases. We then quantitatively assessed thermal treatment procedures by monitoring the lesion progression and temperature maps generated during photothermal procedures. In vivo demonstration has also been accomplished by imaging laserbased tumor ablation. Finally, we demonstrated applicability of the newly developed methodology for real-time optoacoustic monitoring of radiofrequency ablation procedures.

Projektbezogene Publikationen (Auswahl)

  • "Non-contact monitoring of incision depth in laser surgery with air-coupled ultrasound transducers", Optics Letters, 41(12), 2704- 2707 (2016)
    F. J. Oyaga Landa, X. L. Deán-Ben, F. M. de Espinosa, and D. Razansky
    (Siehe online unter https://doi.org/10.1364/ol.41.002704)
  • “Advanced optoacoustic methods for multi-scale imaging of in vivo dynamics”, Chemical Society Reviews, 46, 2158—2198 (2017)
    X. L. Deán-Ben, S. Gottschalk, B. McLarney, S. Shoham, and D. Razansky
    (Siehe online unter https://doi.org/10.1039/c6cs00765a)
  • “Volumetric optoacoustic temperature mapping in photothermal therapy”, Scientific Reports, 7: 9695 (2017)
    F. J. Oyaga Landa, X. L. Deán-Ben, R. Sroka, and D. Razansky
    (Siehe online unter https://doi.org/10.1038/s41598-017-09069-5)
  • “Integrated catheter for simultaneous radiofrequency ablation and optoacoustic monitoring of lesion progression”, Optics Letters, 43(8), 1886-1889 (2018)
    J. Rebling, F. J. Oyaga Landa, X. L. Deán-Ben, A. Douplik, and D. Razansky
    (Siehe online unter https://doi.org/10.1364/ol.43.001886)
  • "Four-dimensional optoacoustic monitoring of tissue heating with medium intensity focused ultrasound", Ultrasonics, 94, 117-1232 (2019)
    F. J. Oyaga Landa, S. R. Penacoba, F. M. de Espinosa, D. Razansky, X. L. Deán-Ben
    (Siehe online unter https://doi.org/10.1016/j.ultras.2018.11.011)
  • “Endocardial irrigated catheter for volumetric optoacoustic mapping of radio-frequency ablation lesion progression”, Optics Letters, 44(23), 5808-5811 (2019)
    Ç. Özsoy, X. L. Deán-Ben, D. Razansky
    (Siehe online unter https://doi.org/10.1364/ol.44.005808)
  • "In vivo optoacoustic monitoring of percutaneous laser ablation of tumors in a murine breast cancer model", Optics Letters, 45(7), 2006-2009 (2020)
    V. Periyasamy, Ç. Özsoy, M. Reiss, X. L. Dean-Ben, and D. Razansky
    (Siehe online unter https://doi.org/10.1364/ol.386360)
  • "Non-invasive multi-parametric characterization of mammary tumors with transmission-reflection optoacoustic ultrasound", Neoplasia, 22(12), 770-777 (2020)
    B. Lafci, E. Merčep, J. L. Herraiz, X. L. Deán-Ben, and D. Razansky
    (Siehe online unter https://doi.org/10.1016/j.neo.2020.10.008)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung