Project Details
Projekt Print View

Nanofauna (flagellates, amoebae) diversity in relation to land use and ecosystem functioning NANOFAUNA DIVERSITY (NANOFAUN)

Subject Area Ecology and Biodiversity of Plants and Ecosystems
Term from 2008 to 2017
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 61376191
 
Protozoa play a dominant role in controlling the flux of carbon through bacteria in soil, in particular in the plant rhizosphere and detritusphere. In contrast to the fundamental role of nanoprotozoa in soil systems there is only anecdotal information on the diversity of these most abundant eukaryotes in soil. One major reason for the general ignorance of nanofauna were methodological difficulties in analysing small protists in the opaque soil environment and the lack of taxonomic expertise. However, recent developments in molecular biology and in the cultivation of so-called uncultivable protists now allow the incorporation of nanofauna studies to close the important gap on this important trophic link in the soil food web. During the first grant period our groups have developed new specific molecular primers for several clades of flagellates and amoebae which are currently applied in a first high through-put 454- sequencing initiative. We also adopted a new aliquot cultivation procedure to soils, allowing sequencing of single clones, and direct analyses of soil suspensions. We are ready to apply these methods on all 150 intensively studied forest plots to analyze the abundance and biodiversity of flagellates and amoebae. The combination of these methods now allows us to obtain comparable estimates of the diversity of heterotrophic flagellates and naked amoebae in unprecedented detail. This generates the first data set worldwide considering nanoprotists as the most abundant but least studied soil component on a quantitative and qualitative level in direct relation to data on corresponding bacteria, fungi, and many other biotic and abiotic soil parameters (above and below ground). Closing the gap between bacteria and multicellular organisms should be fundamental for our understanding of the biodiversity in soil.
DFG Programme Infrastructure Priority Programmes
 
 

Additional Information

Textvergrößerung und Kontrastanpassung