Detailseite
Projekt Druckansicht

Dynamic Modeling of the Andean Orogeny Embedded in a 3D Spherical-Shell Model of the Earth's Mantle

Antragsteller Professor Dr. Jonas Kley
Fachliche Zuordnung Paläontologie
Förderung Förderung von 2009 bis 2015
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 105044687
 
Erstellungsjahr 2016

Zusammenfassung der Projektergebnisse

We achieved the most important goals of the first part of our project: We developed a dynamical 3-D spherical-shell model of the thermal and chemical evolution of the Earth’s mantle and obtained the following results. The continental-crust (CC) formation is inseparably tied to thermoconvective mantle evolution. The actual rate of continental growth is NOT uniform through time. Our integrated CC-growth curve is near curves of Belousova et al. (2010) and Dhuime et al. (2012), however it shows episodicity. A cluster of our runs reproduces the observed peaks of ages of detrital zircons. The same runs arrive at the observed present-day surface heat flow and continental mass. The second part served as a numerical preparation of a second 3-D spherical shell model with prescribed plate motions and at a precondition of a regional dynamic model of Andean orogenesis. In this way, the following extensive numerical improvements of the code have been achieved: Enhancement of the code to increase global resolution and maximum number of MPI processes. Further development and integration of the Ruby test framework into the automated BuildBot tests. Implementation of a finite-element inf-sup stabilization using pressure-polynomial projections. Development and implementation of an efficient preconditioner for the variable-viscosity Stokes system. Refinement of the Pressure Correction algorithm, giving more robust convergence. Restructuring of the code to use language features of Fortran95 and Fortran2003 where possible. Integration of automated code documentation using doxygen. Integration of VTK-support and automated visualization. Significant improvements in the formulation of the free-slip boundary condition on the spherical surface.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung