Detailseite
Projekt Druckansicht

Kristallographische und elektronenmikroskopische Untersuchung des intraflagellären Transportes

Antragsteller Dr. Esben Lorentzen
Fachliche Zuordnung Strukturbiologie
Förderung Förderung von 2009 bis 2014
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 115487418
 
Erstellungsjahr 2015

Zusammenfassung der Projektergebnisse

This Emmy Noether project was funded with the aim of providing mechanistic insights into the process of Intraflagellar Transport (IFT) by which the cilium organelle is formed and maintained. A particular focus was put on the reconstitution and structural elucidation of IFT complexes and the mapping of cargo binding sites. When we started our research there was not a single high-resolution structure available for any IFT protein or domain. In the past 5 years we have reconstituted numerous IFT-complexes of which the larges comprises 9 subunits. Crystal structures have been determined of 3 subcomplexes (IFT27/25, IFT70/52 and IFT46/52) providing the first atomic view of IFT complexes. Additionally, we determined the crystal structure of the N-terminal domain of IFT81 and showed that this domain constitutes a bona fide tubulin cargo-binding site representing the first comprehensive study of how the IFT machinery recognizes ciliary cargoes. Using this approach, we have provided a high-resolution interaction map for the IFT-B core complex and outlined how IFT complexes may function in intracellular transport of ciliary components. Additionally, with biochemically pure samples of IFT complexes in hand, we have successfully initiated single-particle EM work and determined a cryo-EM structure of the IFT-B core complex at 12Å resolution. This structure will serve as a starting point for the structural elucidation of the entire IFT complex and will provide important insights into the molecular mechanisms of the IFT process.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung