Detailseite
Projekt Druckansicht

Coordination Project

Fachliche Zuordnung Kognitive, systemische und Verhaltensneurobiologie
Förderung Förderung von 2009 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 123290411
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

The aim of the coordination project of the priority program “Integrative Analysis of Olfaction” from administrative point of view was to create a scientific community of olfactory neuroscientists with high visibility that is sustainable and lasting beyond the funding period. Our tools to achieve this were to foster communication, scientific exchange, personal contacts at all levels: PIs, PhD and Master students, who will form tomorrow`s community. To realize our aims, we had on our hands the initial network of the SPP tandems and the funds provided by the DFG. For the last 8 years we were able to create a vibrant scientific network of olfactory neuroscientists consisting of more than 220 members, including the members of the advisory board, the PIs, the PhD students and postdocs directly funded by the SPP, as well as the associated members – master, PhD students and postdocs working on the SPP projects. From the 89 young scientists involved in our program, 30% are still graduating, 27% found positions in German labs, 21% in international labs, and 11% decided on a career outside of science. 11 SPP PIs were appointed professors during the SPP period. Thanks to the equal opportunity measures, young female researcher improved how to plan their careers in a long-term perspective. We increased the international visibility of the German olfaction community by inviting international speakers, organizing symposia at international meetings, providing funds to the PIs and the students to attend international meeting and present the results of their research and to distribute our flyer. From the scientific point of view, the goals of our project were to understand how olfactory coding works, across species, through the integration of molecular, physiological, neuroanatomical, behavioral and computational research projects in olfactory coding.

Projektbezogene Publikationen (Auswahl)

  • (2013) Ancestral amphibian V2rs are expressed in the main olfactory epithelium. PNAS 110:7714-7719
    Sigrun Korsching and Ivan Manzini; Syed A S, Sansone A, Nadler W, Manzini I, and Korsching S
    (Siehe online unter https://doi.org/10.1073/pnas.1302088110)
  • (2013) Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream. Cell. Mol. Life Sci. 70:1965-1984
    Gliem S, Syed A S, Sansone A, Kludt E, Tantalaki E, Hassenklöver T, Korsching S I, and Manzini I
    (Siehe online unter https://doi.org/10.1007/s00018-012-1226-8)
  • (2015) Hypothalamic gonadotropin-releasing hormone (GnRH) receptor neurons fire in synchrony with the female reproductive cycle. J Neurophysiol 114, 1008-1021
    Schauer C, Tong T, Petitjean H, Blum T, Peron S, Mai O, Schmitz F, Boehm U, Leinders- Zufall T
    (Siehe online unter https://doi.org/10.1152/jn.00357.2015)
  • (2015). Disinhibition of olfactory bulb granule cells accelerates odor discrimination in mice. Nature Communications, 6:8950
    Nunes D, and Kuner T
    (Siehe online unter https://doi.org/10.1038/ncomms9950)
  • (2016) 4-Hz oscillations synchronize prefrontal–amygdala circuits during fear behaviour. Nature Neuroscience, 535(7612): 420-4
    Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske R, Wurtz H, Bagur S, Benchenane K, Sirota A, Courtin J, Herry C
    (Siehe online unter https://doi.org/10.1038/nn.4251)
  • (2016) A challenge for a male noctuid moth? Discerning the female sex pheromone against the background of plant volatiles. Front. Physiol., 7: 143
    adeke E, Haverkamp A, Hansson B S, Sachse S
    (Siehe online unter https://doi.org/10.3389/fphys.2016.00143)
  • (2016) A sensor for low environmental oxygen in the mouse main olfactory epithelium. Neuron 92, 1196-1203
    Bleymehl K, Perez-Gomez A, Omura M, Moreno-Perez A, Macias D, Bai Z, Johnson RS, Leinders-Zufall T, Zufall F, Mombaerts P
    (Siehe online unter https://doi.org/10.1016/j.neuron.2016.11.001)
  • (2016) NHERF1 in vomeronasal microvilli: A putative organizer of signaling microdomains. Chemical Senses 42: 25-35
    Henkel B, Bintig W, Bhat S, Spehr M, Neuhaus EM
    (Siehe online unter https://doi.org/10.1093/chemse/bjw094)
  • (2017) Identification and characterization of the bombykal receptor in the hawkmoth Manduca sexta. J. Exp. Biol., jeb.154260
    Wicher D, Morinaga S, Halty-deLeon L, Funk N, Hansson B, Touhara K, Stengl M
    (Siehe online unter https://doi.org/10.1242/jeb.154260)
  • (2017) Identification of accessory olfactory system and medial amygdala in the zebrafish. Sci Rep 7:44295
    Biechl D, Tietje K, Ryu S, Grothe B, Gerlach G, Wullimann MF
    (Siehe online unter https://doi.org/10.1038/srep44295)
  • (2017) Trace conditioning in Drosophila induces associative plasticity in mushroom body Kenyon Cells and dopaminergic neurons. Frontiers in Neural Circuits 11-42. - eISSN 1662-5110
    Dylla KV, Raiser G, Galizia CG, Szyszka P
    (Siehe online unter https://doi.org/10.3389/fncir.2017.00042)
  • „Integrative Analysis of Olfaction“; Sonderausgabe von Neuroforum zur Olfaktorik. e-Neuroforum, 17(3), pp. 88-88. Retrieved 2 Jan. 2018. (Special issue of Neuroforum thematically focused on olfaction)
    Galizia G (2011)
    (Siehe online unter https://doi.org/10.1515/nf-2011-0302)
  • (2017) Dendritic arborization patterns of small juxtaglomerular cell types within the rodent olfactory bulb. Frontiers in Neuroanatomy
    Bywalez W G, Ona-Jodar T, Lukas M, Ninkovic J, Egger V
    (Siehe online unter https://doi.org/10.3389/fnana.2016.00127)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung