Detailseite
Projekt Druckansicht

Aspekte niedrig-dimensionaler und nicht-autonomer Dynamischer Systeme

Fachliche Zuordnung Mathematik
Förderung Förderung von 2009 bis 2016
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 129048169
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

Keine Zusammenfassung vorhanden

Projektbezogene Publikationen (Auswahl)

  • Elliptic stars in a chaotic night. J. Lond. Math. Soc. 84(3):595–611, 2011
    T. Jäger
  • Non-autonomous saddle-node bifurcations: Random and deterministic forcing. J. Diff. 253(2):379–399, 2012
    V. Anagnostopoulou and T. Jäger
    (Siehe online unter https://doi.org/10.1016/j.jde.2012.03.016)
  • Dimensions of attractors in pinched skew products. Comm. Math. Phys. 320(1):101–119, 2013
    M. Gröger and T. Jäger
    (Siehe online unter https://doi.org/10.1007/s00220-013-1713-2)
  • Strange non-chaotic attractors in quasiperiodically forced circle maps: Diophantine forcing. Ergodic Theory Dyn. Syst. 33:1477–1501, 2013
    T. Jäger
    (Siehe online unter https://doi.org/10.1017/S0143385712000375)
  • A classification of minimal sets for surface homeomorphisms. Math. Z. 278(3–4):1153–1177, 2014
    A. Passeggi and J. Xavier
    (Siehe online unter https://doi.org/10.1007/s00209-014-1350-2)
  • A construction of almost automorphic minimal sets. Israel J. Math. 204(1):373–395, 2014
    R. Hric and T. Jäger
    (Siehe online unter https://doi.org/10.1007/s11856-014-1102-3)
  • Rational Polygons as rotation sets for generic torus homeomorphisms. J. Lond. Math. Soc. (2) 89(1):235–254, 2014
    A. Passeggi
    (Siehe online unter https://doi.org/10.1112/jlms/jdt040)
  • A model for the nonautonomous Hopf bifurcation. Nonlinearity 28(7):2587–2616, 2015
    V. Anagnostopoulou, T. Jäger and G. Keller
    (Siehe online unter https://doi.org/10.1088/0951-7715/28/7/2587)
  • On torus homeomorphisms semiconjugate to irrational rotations. Ergodic Theory Dyn. Syst. 35(7):2114–2137, 2015
    T. Jäger and A. Passeggi
    (Siehe online unter https://doi.org/10.1017/etds.2014.23)
  • Non-smooth saddle-node bifurcations I: Existence of SNA. Ergodic Theory Dyn. Syst. 36(4):1130-1155, 2016
    G. Fuhrmann
    (Siehe online unter https://doi.org/10.1017/etds.2014.92)
  • Random minimality and continuity of invariant graphs for random dynamical systems. Trans. Am. Math. Soc. 368(9):6643–6662, 2016
    T. Jäger and G. Keller
    (Siehe online unter https://doi.org/10.1090/tran/6591)
  • Non-smooth saddle-node bifurcations II: Dimensions of strange attractors. Ergodic Theory and Dynamical Systems, 24 pages
    G. Fuhrmann, M. Gröger and T. Jäger
    (Siehe online unter https://doi.org/10.1017/etds.2017.4)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung