Detailseite
Projekt Druckansicht

TRR 32:  Muster und Strukturen in Boden-Pflanzen-Atmosphären-Systemen: Erfassung, Modellierung und Datenassimilation

Fachliche Zuordnung Geowissenschaften
Agrar-, Forstwissenschaften und Tiermedizin
Chemie
Mathematik
Förderung Förderung von 2007 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 15232683
 
Erstellungsjahr 2020

Zusammenfassung der Projektergebnisse

Research in TR32 focussed on mesoscale continental terrestrial systems, which encompass as their compartments the soil including the groundwater interacting with the soil, the land surface with vegetation, lakes and rivers, and the atmosphere. While research addressed terrestrial systems in general, the Rur catchment in western Germany with small parts in Belgium and in the Netherlands - a typical European midlatitude catchment covering an area of approximately 2400 km2 close to the cooperating institutions - was selected as its main experimental and modeling area. The central goal was the observation, understanding and modeling of patterns in regional terrestrial systems, and the exploitation of the new knowledge for the provision of high-quality predictions of state variables of the system including the fluxes of water, CO2, and heat energy within and between its compartments on different spatial and temporal scales. New technologies were developed for measuring soil structure including pores and their water content including roots in three dimensions with geoelectrical methods, for observing in-situ the development of plant roots via cameras running underground in tubes, for quantifying transpiration of cereal plants with miniscule heat flow devices, for monitoring the photosynthetic activity of plants via fluorescence effects, for quantifying large scale near-surface soil moisture and the atmospheric boundary-layer moisture and temperature by active and passive microwave observations, and for estimating precipitation and identifying cloud processes with polarimetric and multifrequency radiometers and radars. TR32 put a strong focus on geophysical methods, which allow to unveil the soil structure by its influence on induced electrical currents and electromagnetic wave fields. With these methods the often observed spatially heterogeneous growth of crops could be related to subsurface soil structures originating from old river channels covered and blurred over centuries by land management. Novel miniaturized systems were developed for observations on centimetre scales and first steps were made to apply these methods on larger scales using aircrafts as device carriers. But also laboratory observations on the soil led to new discoveries, like the dependence of the soil respiration by living organisms on e.g. soil temperature, which will have profound influence of its simulation in land models. Three sensor networks – SoilNet - of the order of 100 sensors observing soil moisture and temperature at different depths over kilometer-wide areas, about ten cosmic ray probes which allow to estimate soil moisture variations in a radius of about 100 m from a station via the scattering of extra-terrestrial neutrons by the Hydrogen in the water molecules, the rhizotron facility in Selhausen for observing plant growth under natural and managed conditions and the Cloud and Precipitation Exploration Laboratory (CPEX- Lab) including the Jülich Observatory for Cloud Evolution (JOYCE) set up at Forschungszentrum Jülich GmbH and the twin polarimentric X-band weather radar setup in Bonn and the Sophienhöhe near Jülich are the most prominent installations, which quasi-continuously operate and constitute important infrastructures for follow-up research on terrestrial systems. The Terrestrial Systems Modeling Platform TerrSysMP is the most prominent model development by TR32 as a universal tool to simulate and predict the state evolution of regional terrestrial systems on grid resolutions for 100 meters to several kilometers. TerrSysMP couples the distributed, hydrological model ParFlow simulating in three dimensions the flow of water and heat in the saturated (groundwater) and unsaturated soil and on the surface (rivers) with the land surface model CLM of NCAR simulating besides the exchange between the land and the atmosphere also all plant processes, and with the atmospheric model COSMO – the operational weather forecasting model of several European national weather services including the Deutscher Wetterdienst (DWD). The model components themselves have seen many extensions reaching from river flow parametrizations in ParFlow, the inclusion of vertical redistributions of soil water by roots, and improved soil respiration formulation and new plant parametrizations in CLM to the addition of variable CO2 in COSMO all of which led to new findings on the processes making up the terrestrial system. TerrSysMP is adapted to several HPC environments in order to allow also for regional weather and climate simulations up to continental scales. First steps were taken to develop TerrSysMP into an integrated monitoring system, which allows to assimilate arbitrary observations into the model in order to follow the current state of the terrestrial system and provide predictions. TerrSysMP has already become a central tool in several follow-up projects reaching from simulations and prediction on farms within the CoE PhenoRob to the continental scale in several ERC grants and is continuously updated with new components like the inclusion of the new German community atmospheric model ICON as an optional compartment model as an alternative to COSMO. The concept of patterns guided research in TR32 on all scales and all compartments of the terrestrial system. This led to new insights into the impact soil heterogeneity of the managed crops, which was first observed and then explained by dedicated model experiments. The impact of soil and vegetation heterogeneity on the atmosphere was analyzed with high-resolution coupled soil-atmosphere simulations on the meter scale, which revealed noticeable imprints of the surface patterns in the state of motion of the atmospheric boundary layer including the evolution of clouds as also seen in observations. This new knowledge was implemented in the TerrSysMP model framework, which served as an accumulator of TR32 research and remains besides the developed infrastructures as one of its prominent achievements.

Projektbezogene Publikationen (Auswahl)

  • 2009: Characterisation and understanding of bare soil respiration spatial variability at plot scale. Vadose Zone Journal, 8, 762-771
    Herbst, M., N. Prolingheuer, A. Graf, J.A. Huisman, L. Weihermüller, and J. Vanderborght
    (Siehe online unter https://doi.org/10.2136/vzj2008.0068)
  • 2010: Potential of Wireless Sensor Networks for Measuring Soil Water Content Variability. Vadose Zone Journal, 9(4), 1002-1013
    Bogena, H.R., M. Herbst, J.A. Huisman, U. Rosenbaum, A. Weuthen, and H. Vereecken
    (Siehe online unter https://doi.org/10.2136/vzj2009.0173)
  • 2010: Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources. Water Resources Research, 46(W0420)
    Kollet, S.J., R.M. Maxwell, C.S. Woodward, S. Smith, J. Vanderborght, H. Vereecken, and C. Simmer
    (Siehe online unter https://doi.org/10.1029/2009WR008730)
  • 2012: Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resources Research, 48 (W10544)
    Rosenbaum, U., H.R. Bogena, M. Herbst, J.A. Huisman, T.J. Peterson, A. Weuthen, A.W. Western, and H. Vereecken
    (Siehe online unter https://doi.org/10.1029/2011WR011518)
  • 2013: Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario. Water Resources Research, 49(9), 5778-5791
    Bogena, H., J. Huisman, R. Baatz, H. Hendricks-Franssen, and H. Vereecken
    (Siehe online unter https://doi.org/10.1002/wrcr.20463)
  • 2013: Large-Eddy Atmosphere-Land-Surface Modeling over Heterogeneous Surfaces: Model Development and Comparison with Measurements. Boundary-Layer Meteorology, 148(2), 333-356
    Shao, Y., S. Liu, J.H. Schween, and S. Crewell
    (Siehe online unter https://doi.org/10.1007/s10546-013-9823-0)
  • 2014: A scale-consistent Terrestrial System Modeling Platform based on COSMO, CLM and ParFlow. Mon. Wea. Rev., 142, 3466-3483
    Shrestha, P., M. Sulis, M. Masbou, S. Kollet, and C. Simmer
    (Siehe online unter https://doi.org/10.1175/MWR-D-14-00029.1)
  • 2014: Improving the stem heat balance method for determining sap-flow in wheat. Agricultural and Forest Meteorology, 186, 34- 42
    Langensiepen, M., M. Kupisch, A. Graf, M. Schmidt, and F. Ewert
    (Siehe online unter https://doi.org/10.1016/j.agrformet.2013.11.007)
  • 2014: Miniaturization of NMR Systems: Desktop Spectrometers, Microcoil Spectroscopy, and “NMR on a Chip” for Chemistry, Biochemistry, and Industry. Chemical Reviews, 114(11), 5641-5694
    Zalesskiy, S.S., E. Danieli, B. Bluemich, and V.P. Ananikov
    (Siehe online unter https://doi.org/10.1021/cr400063g)
  • 2014: Monitoring and Modeling the Terrestrial System from Pores to Catchments - the Transregional Collaborative Research Center on Patterns in the Soil- Vegetation-Atmosphere System. Bulletin of the American Meteorological Society, 96, 1765-1787
    Simmer, C., et al.
    (Siehe online unter https://doi.org/10.1175/BAMS-D-13-00134.1)
  • 2014: Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements. European Journal of Agronomy, 64, 8-20
    Stadler, A., M. Kupisch, M. Langensiepen, J. van der Kruk, and F. Ewert
    (Siehe online unter https://doi.org/10.1016/j.eja.2014.12.004)
  • 2015: An empirical vegetation correction for soil water content quantification using cosmic ray probes. Water Resources Research, 2030-2046
    Baatz, R., H. Bogena, H. Hendricks-Franssen, J. Huisman, C. Montzka, and H. Vereecken
    (Siehe online unter https://doi.org/10.1002/2014WR016443)
  • 2015: Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes. J. Hydrometeorology, 16, 517-533
    Sulis, M., M. Langensiepen, A. Schickling, C. Simmer, and S. J. Kollet
    (Siehe online unter https://doi.org/10.1175/JHM-D-14-0153.1)
  • 2015: Interception effects on stable isotope driven streamwater transit time estimates, Geophys. Res. Lett., 42, 5299-5308
    Stockinger, M. P., A. Lücke, J.J. McDonnell, B. Diekkrüger, H. Vereecken, and H.R. Bogena
    (Siehe online unter https://doi.org/10.1002/2015GL064622)
  • 2015: JOYCE: Jülich Observatory for Cloud Evolution. Bull. Amer. Meteor. Soc., 96, 1157-1174
    Loehnert, U., et al.
    (Siehe online unter https://doi.org/10.1175/BAMS-D-14-00105.1)
  • 2015: Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic Induction measurements. Geoderma, 241-242, 262-271
    Rudolph, S., et al.
    (Siehe online unter https://doi.org/10.1016/j.geoderma.2014.11.015)
  • 2015: Multi-scale decomposition for heterogeneous land-atmosphere systems. J. Geophys. Res. Atmos., 120, 917-930
    Liu, S., Y. Shao, M. Hintz, and S. Lennartz-Sassinek
    (Siehe online unter https://doi.org/10.1002/2014JD022258)
  • 2015: Research data management services for a multidisciplinary, collaborative research project: Design and implementation of the TR32DB project database. Program, 49(4), 494-512
    Curdt, C., and D. Hoffmeister
    (Siehe online unter https://doi.org/10.1108/PROG-02-2015-0016)
  • 2015: Spatio-temporal soil moisture patterns - a meta-analysis using plot to catchment scale data. Journal of Hydrology, 520, 326-341
    Korres, W., et al.
    (Siehe online unter https://doi.org/10.1016/j.jhydrol.2014.11.042)
  • 2015: The subsurface-land surface-atmosphere connection under convective conditions. Advances in Water Resources, 1-42
    Rahman, A., M. Sulis, and S. Kollet
    (Siehe online unter https://doi.org/10.1016/j.advwatres.2015.06.003)
  • 2015: Understanding NMR relaxometry of partially water-saturated rocks. Hydrology and Earth System Sciences, 19, 2763-2773
    Mohnke, O., R. Jorand, C. Nordlund, and N. Klitzsch
    (Siehe online unter https://doi.org/10.5194/hess-19-2763-2015)
  • 2015: Use of specific attenuation for rainfall measurement at X-band radar wavelengths - Part 1: Radar calibration and partial beam blockage estimation. Journal of Hydrometeorology, 16(2), 487-502
    Diederich, M., A. Ryzhkov, C. Simmer, P. Zhang, and S. Troemel
    (Siehe online unter https://doi.org/10.1175/JHM-D-14-0066.1)
  • 2016: Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale. Quarterly Journal of the Royal Meteorological Society, 142(696), 1490-1504
    Bick, T., et al.
    (Siehe online unter https://doi.org/10.1002/qj.2751)
  • 2016: Construction of Minirhizotron Facilities for Investigating Root Zone Processes. Vadose Zone Journal, 15(9)
    Cai, G., J. Vanderborght, A. Klotzsche, J. van der Kruk, J. Neumann, N. Hermes, and H. Vereecken
    (Siehe online unter https://doi.org/10.2136/vzj2016.05.0043)
  • 2016: On the role of patterns in understanding the functioning of soil-vegetation-atmosphere systems. Journal of Hydrology, 542, 63-86
    Vereecken, H., Y. Pachepsky, C. Simmer, J. Rihani, A. Kunoth, W. Korres, A. Graf, H.J. Hendricks Franssen, I. Thiele-Eich, and Y. Shao
    (Siehe online unter https://doi.org/10.1016/j.jhydrol.2016.08.053)
  • 2016: Spatial heterogeneity of Leaf Area Index (LAI) and its temporal course on arable land: Combining field measurements, remote sensing and simulation in a Comprehensive Data Analysis Approach (CDAA), PLoS ONE, 11
    Reichenau, T. G., W. Korres, C. Montzka, P. Fiener, F. Wilken, A. Stadler, G. Waldhoff, and K. Schneider
    (Siehe online unter https://doi.org/10.1371/journal.pone.0158451)
  • 2016: Studying the influence of groundwater representations on land surface-atmosphere feedbacks during the European heat wave in 2003. Geophys. Res. Atmos., 121
    Keune, J., F. Gasper, K. Goergen, A. Hense, P. Shrestha, M. Sulis, and S. Kollet
    (Siehe online unter https://doi.org/10.1002/2016JD025426)
  • 2016: TerrSysMP– PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surface–subsurface model. Geoscientific Model Development, 9(4), 1341-1360
    Kurtz, W., G. He, S. Kollet, R. Maxwell, H. Vereecken, and H. Hendricks-Franssen
    (Siehe online unter https://doi.org/10.5194/gmd-9-1341-2016)
  • 2017: Multi-Data Approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany. International Journal of Applied Earth Observation and Geoinformation, 61, 55-69
    Waldhoff, G., U. Lussem, and G. Bareth
    (Siehe online unter https://doi.org/10.1016/j.jag.2017.04.009)
  • 2017: Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems. Biogeosciences, 14(4), 921-939
    Weigand, M., and A. Kemna
    (Siehe online unter https://doi.org/10.5194/bg-2016-154)
  • 2017: Quantitative mapping of solute accumulation in a soil-root system by magnetic resonance imaging. Water Resources Research, 53, 7469-7480
    Haber-Pohlmeier, S., J. Vanderborght, and A. Pohlmeier
    (Siehe online unter https://doi.org/10.1002/2017WR020832)
  • 2018: Atmospheric boundary layer classification with Doppler lidar. J. Geophys. Res. Atmos., 123
    Manninen A.J., T. Marke, M.J. Tuononen, and E.J. O'Connor
    (Siehe online unter https://doi.org/10.1029/2017JD028169)
  • 2018: CRootBox: a structural–functional modeling framework for root systems. Annals of Botany, 121(5), 1033-1053
    Schnepf, A., D. Leitner, M. Landl, G. Lobet, T.H. Mai, S. Morandage, C. Sheng, M. Zörner, J. Vanderborght, and H. Vereecken
    (Siehe online unter https://doi.org/10.1093/aob/mcx221)
  • 2018: Evaluation and uncertainty analysis of regional scale CLM4.5 net carbon flux estimates. Biogeosciences, 15, 187-208
    Post, H., H.J. Hendricks Franssen, X. Han, R. Baatz, M. Schmidt, and H. Vereecken
    (Siehe online unter https://doi.org/10.5194/bg-15-187-2018)
  • 2018: Joint inversion of nuclear magnetic resonance data from partially saturated rocks using a triangular pore model. Geophysics, 83, JM15-JM28
    Hiller, T., and N. Klitzsch
    (Siehe online unter https://doi.org/10.1190/geo2017-0697.1)
  • 2018: Long-Term Observations and High Resolution Modeling of Mid-Latitude Nocturnal Boundary-Layer Processes Connected to Low-Level-Jets. J. Applied Meteorology and Climatology
    Marke, T., S. Crewell, V. Schemann, J. H. Schween, and M. Tuononen
    (Siehe online unter https://doi.org/10.1175/JAMC-D-17-0341.1)
  • 2018: The Temperature Sensitivity (Q10) of Soil Respiration: Controlling Factors and Spatial Prediction at Regional Scale Based on Environmental Soil Classes. Glob. Biogeochem. Cycl., 32(2), 306-323
    Meyer, N., G. Welp, and W. Amelung
    (Siehe online unter https://doi.org/10.1002/2017GB005644)
  • 2018: Understanding soil and plant interaction by combining ground-based quantitative electromagnetic induction and airborne hyperspectral data. Geophysical research letters, 45
    von Hebel, C., M. Matveeva, E. Verweij, P. Rademske, M.S. Kaufmann, C. Brogi, H. Vereecken, U. Rascher, and J. van der Kruk
    (Siehe online unter https://doi.org/10.1029/2018GL078658)
  • 2018: Using sap flow data to parameterize the Feddes water stress model for Norway spruce. Water 2018, 10, 279
    Rabbel, I., H. Bogena, B. Neuwirth, and B. Diekkrüger
    (Siehe online unter https://doi.org/10.3390/w10030279)
  • 2019: Large-scale soil mapping using multi-configuration EMI and supervised image classification. Geoderma, 335, 133-148
    Brogi, C., J. A. Huisman, S. Pätzold, C. von Hebel, L. Weihermüller, M.S. Kaufmann, J. van der Kruk, and H. Vereecken
    (Siehe online unter https://doi.org/10.1016/j.geoderma.2018.08.001)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung