Detailseite
Projekt Druckansicht

Electronic structure and many-body effects in interfaces of oxide heterostructures

Fachliche Zuordnung Experimentelle Physik der kondensierten Materie
Förderung Förderung von 2009 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 85460759
 
Transcending the capabilities of their conventional semiconductor counterparts, oxide interfaces provide the unique opportunity to control, enhance, and create functionalities such as superconductivity, magnetism, metal-insulator transitions, or topological phases. Striking examples are the correlated interface electron systems that form in the oxide heterostructures LaAlO3/SrTiO3 (LAO/STO) and LaVO3/SrTiO3 (LVO/STO) beyond a critical film thickness. This project is devoted to the fabrication of such hybrid systems by pulsed laser deposition and the study of their chemical and electronic interface structure by high-energy spectroscopies as well as scanning probe methods. Important questions to be addressed comprise the mapping of ferromagnetic and non-magnetic metallic patches at the LAO/STO interface using the contrast from x-ray magnetic circular dichroism in a scanning x-ray microscope and the in situ investigation of gating effects. Resonant techniques and cross-sectional scanning tunneling spectroscopy will be employed to directly probe the interface states, in particular the band-filling controlled Mott transition in LVO/STO. Another focus will be on the possibility to tune the dimensionality and hence the correlations of the two-dimensional electron system using vicinal substrates. Varying the LAO thickness and the STO miscut angle, a dimensional crossover has been predicted resulting in one-dimensional chains. We will systematically explore the relevant parameter space employing scanning tunneling microscopy and spectroscopy as well as angle-resolved photoelectron spectroscopy. This topic will be complemented by the investigation of reduced titanate nanowires which can be stabilized on bare STO surfaces. A last aspect concerns the creation of novel phases by design as has been highlighted lately for perovskite or perovskite-type high-Z metal oxide bilayers with (111)-orientation. In the presence of a large spin-orbit coupling topological insulators may result if the band topology is adjusted properly by applying an electric field or by sandwiching the bilayer between different substrates.
DFG-Verfahren Forschungsgruppen
Beteiligte Person Professor Dr. Michael Sing
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung