Detailseite
Projekt Druckansicht

Neue Commodity Rechnerarchitekturen

Förderung Förderung in 2010
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 173136989
 
Erstellungsjahr 2016

Zusammenfassung der Projektergebnisse

Mit NVIDIA-Grafikkarten der Fermi-Architektur (64-bit Rechengenauigkeit und ECC-Speicher) und dem Larrabee-Prozessor von Intel begann das Manycore-Zeitalter mit dem Versprechen höhere Rechenleistung bei geringerem Energieverbrauch liefern zu können. Eingebettet in ein Commodity-Rechencluster wurden drei unterschiedliche, wegweisende Architekturen in der Produktionsumgebung eines universitären Rechenzentrums aus Sicht der Methoden- und Anwendungswissenschaften untersucht: ScaleMP: kohärente Kopplung von Commodity-Rechnern zu einem Shared-Memory-Rechner (512 Cores); Intel Xeon Phi („Knights Corner“): dem Nachfolger des Larrabee–Manycoreprozessors auf x86-Basis; NVIDIA: Grafikprozessoren zur Visualisierung in einer VR-Umgebung sowie für Simulationsrechnungen. Letztere sind das Herz des GPU-Clusters welche die in 2012 beschaffte CAVE ansteuern. Die Forschungsziele, die damit verfolgt wurden, beziehen sich daher auch auf dieses GPU-Cluster. Folgende weitere Aspekte wurden mit Hilfe der beschafften Geräte erforscht und weiterentwickelt: Integration innovativer Architekturen in die Produktionsumgebung eines großen Rechenclusters. Programmierparadigmen für Manycore-Rechner, insbes. die Unterstützung von Akzeleratoren und NUMA-Architekturen durch OpenMP. Werkzeuge zur Performance- und Korrektheitsanalyse für Manycore-Rechner (im VI-HPS). Benchmark-Entwicklung für Manycore-Rechner (SPEC ACCEL). Anwendungen und Einsetzbarkeit dieser neuen Architekturen im Computational Engineering Science. Methoden zum Vergleich von Produktivität und Total Cost of Ownership von Manycore-Rechnern. Der produktive Einsatz innovativer Rechnerarchitekturen, der aufgrund der immensen Energiekosten aktueller Hochleistungsrechnersysteme zukünftig unabdingbar ist, benötigt ein angemessenes Software-Ökosystem, sowie eine adäquate Ausbildung der Anwender. Der theoretische Vorteil dieser Architekturen kann nur bei geeigneter Nutzung realisiert werden. Die Forschungsarbeiten, die die geförderten Geräte ermöglicht haben, haben zu wesentlichen Schritten beigetragen, dieses Ökosystem auszubauen und auch das Wissen darüber zu verbreiten in der Lehre, durch Nutzerschulungen (PPCES), individuelle Nutzerbetreuung, Bedienungsanleitungen, Tutorials auf internationalen Konferenzen (SC, ICS) und Tuning Workshops (aixCelerate, VI-HPS). Die folgenden drei Anwendungsbereiche konnten u.a. von den neuen Architekturen besonders profitieren: Im Rahmen des Verbundprojektes MeProRisk konnte eine neuartige Methodik zur Erfassung der Struktur und der physikalischen Eigenschaften geothermischer Lagerstätten entwickelt werden. Während der Phase der Exploration und der anschließenden Nutzung der geothermischen Lagerstätte erlaubt diese Methodik eine zunehmend bessere Prognose der Bedingungen im Reservoir und damit eine verbesserte Abschätzung des Fündigkeitsrisikos. Die Parallelisierung für das ScaleMP-Cluster mit großem gemeinsamem Speicher eröffnete die Möglichkeit große Simulationsmodelle und gleichzeitig eine große Anzahl an Ensemble-Mitgliedern für stochastische Methoden zu berechnen. Die Lösung von inversen Problemstellungen mithilfe der automatischen Differenzierung zur optimierten Experimentauslegung (OED) und zur inversen Parameterschätzung und Ungenauigkeitsanalyse benötigt einen erhöhten Aufwand an Rechenzeit und Speicher. Im Rahmen des Exzellenzclusters 236 konnten im Institut für Technische Verbrennung Turbulenzeigenschaften mit einer neuen Methode statistisch erfasst werden. Turbulenz zeichnet sich u.a. durch unvorhersehbare plötzliche Änderungen zugrundeliegender Vektor- und Skalarfelder aus. Das Zerlegen der Felder in kleinere raumfüllende Strukturen mit einem rechen- und speicherintensiver Verfahren wurde durch das ScaleMP-Clusters ermöglicht bei dem alle Prozessoren Zugriff auf den großen gemeinsamen Speicher besitzen. Am Lehrstuhl für Experimentelle Molekulare Bildgebung wurde für mehrere umfangreiche biomedizinische Studien GPU-beschleunigter Code für Rekonstruktionsmethoden zur multimodalen dreidimensionalen Fluoreszenztomographie implementiert und damit Ergebnisse erzielt, die mit herkömmlichen Rechnerarchitekturen nicht in angemessener Zeit möglich gewesen wären. In mehreren Projekten wurden innovative Tumorbehandlungskonzepte untersucht, fluoreszente Sonden zur Charakterisierung der Leberentzündung entwickelt, der Effekt der Epo-Therapie auf das Tumorwachstum, die Wirkstoffanreicherung langzirkulierender Nanowirkstoffe in Tumoren und die Anreicherung von Wirkstoffen im Tumor aufgrund durchlässiger Tumorgefäße erforscht, sowie die Verwendung von Hardwarebeschleunigern für die Gradientenberechnung mittels Algorithmischer Differenzierung evaluiert.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung