Detailseite
Projekt Druckansicht

Fortschrittliche Lernmethoden für Verfolgung und Detektion im Rahmen einer medizinischen Workflow Analyse

Fachliche Zuordnung Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing
Förderung Förderung von 2011 bis 2015
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 179168991
 
Erstellungsjahr 2015

Zusammenfassung der Projektergebnisse

Surgical workflow models are built in order to derive and analyse statistical properties of a surgery for recovering the phase of the operation, staff training, data visualization, report generation and monitoring. Building a workflow model requires sufficient amount of data from different sources and sensors such as medical instruments and imaging devices. In this project, we propose to use a multi-view RGB-camera system that automatically estimates the body pose of the surgeons and medical staff. Our goal is to perform 3D human pose estimation of multiple individuals from multiple views inside the operating room. The body poses compose an additional input signal to the framework of the surgical workflow modelling. To that end, we introduce different human body models for pose estimation in the 2D and 3D space based on RGB image input. Moreover, we present a unique dataset for human pose estimation in the operating room that captures a simulated medical operation using a multi-view camera system. We evaluate our models in standard human pose datasets, as well as in the operating room and demonstrate state-of-the-art performance.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung