Detailseite
Geometrie der Skalarkrümmung (B03)
Fachliche Zuordnung
Mathematik
Förderung
Förderung von 2010 bis 2014
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 129719356
Die Krümmung beeinflusst lokale wie globale Eigenschaften des unterliegenden Raumes. Der klassische Fall ist der der Schnittkrümmung. Die Untersuchung von Krümmungsbedingungen hat hier ganze Forschungszweige erwachsen lassen. Räume mit negativer Schnittkrümmung treten bei dynamischen Systemen, in der Gruppentheorie oder der Topologie als Prototypen auf. In der Physik, insbesondere der Relativitätstheorie, sind hingegen Ricci- und Skalarkrümmung wichtiger. Die Skalarkrümmung hat zwar lokal kaum noch eine Aussagekraft. Dennoch führen Bedingungen an diese Krümmung zu subtilen globalen Implikationen und gerade diese sind für die Physik von Bedeutung. Programm ist, Methoden für die Untersuchung der globalen Bedeutung der Skalarkrümmung zu finden, vorhandene Techniken zu erweitern und zu vereinheitlichen und in ihrer Anwendung zu vertiefen.
DFG-Verfahren
Sonderforschungsbereiche
Teilprojekt zu
SFB 878:
Gruppen, Geometrie und Aktionen
Antragstellende Institution
Universität Münster
Teilprojektleiter
Professor Dr. Joachim Lohkamp