Detailseite
Projekt Druckansicht

Small-scale inhomogeneities and their impact on observed mass-loss rates of radiation-driven winds

Fachliche Zuordnung Astrophysik und Astronomie
Förderung Förderung von 2011 bis 2015
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 179960930
 
Erstellungsjahr 2015

Zusammenfassung der Projektergebnisse

The project has accomplished its main task, namely to develop new models for quantitative spectroscopic analysis of hot stars with winds, accounting properly for the effects of a clumped wind consisting of a mixture of optically thick and thin clumps, and with a non-monotonic velocity field. A novel ’effective opacity’ method for line and continuum radiative transfer through a clumpy, accelerating medium was developed and presented in Sundqvist. This method has now been fully incorporated into our group’s model atmosphere and wind computer code fastwind. In the following years, we expect this new version of fastwind to be broadly applied by the research-community for spectroscopic studies of massive stars. First multi-wavelength studies (ranging from high-energy X-rays to the infrared domain) have been performed by us, suggesting that current Galactic O-star mass-loss rates included in models of massive star evolution are overestimated by a factor of ∼3. Inspired by this, we have already launched follow-up studies to this DFG project that will i) develop a new generation of theoretical wind models aiming to explain this reduction, and ii) compute new stellar evolution models using the lower rates.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung