Detailseite
Projekt Druckansicht

Mineralogy and Chemistry of Earth`s core (MCEC) (FP 08)

Fachliche Zuordnung Mineralogie, Petrologie und Geochemie
Förderung Förderung von 2006 bis 2011
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 18592059
 
Erstellungsjahr 2011

Zusammenfassung der Projektergebnisse

The Earth’s core is the most remote region on our planet. The boundary of the core is at about 2900 km in depth. Spacecrafts have reached outer planets, hundreds of millions km away from the Earth, but the deepest drill hole has only reached less than 12 km below the Earth’s surface. Not only do we not have samples from the core, we do not even expect to get any. To date, the most direct observations of the core have come from seismological studies using remote-sensing techniques. Due to the complex internal structure of the Earth, seismic investigations require extensive data coverage and appropriate models. Decoding geochemical signature of the core carried by mantle plumes faces similar challenges. Experimental and computational simulations have been hindered by the necessity to approach pressures over 140 GPa and temperatures above 3000 K prevalent in the core. For these reasons, many fundamental issues concerning the Earth’s core remain controversial and poorly understood. We studied iron-nickel alloy Fe0.9Ni0.1 in situ by means of the angle dispersive X-ray diffraction in internally heated diamond anvil cells (DACs) and measured its resistance as a function of pressure and temperature. At pressures above 225 GPa and temperatures over 3400 K Fe0.9Ni0.1 adopts the bcc structure. Our experimental and theoretical results not only support the interpretation of shockwave data on pure iron as a solid-solid phase transition above ~200 GPa, but also suggest that iron alloys with geochemically reasonable compositions (e.g. with significant nickel, sulfur, or silicon content) adopt the bcc-structure in the Earth’s inner core. First-principles study supported by the temperature-quenched laser-heated diamond anvil-cell experiments on the high-pressure high-temperature structural behaviour of pure iron has been carried out. We have shown that in contrast to the widely accepted picture, the face-centered cubic (fcc) phase becomes as stable as the hexagonal closepacked (hcp) phase at pressures around 300-360 GPa and temperatures around 5000-6000 K. Our temperature-quenched experiments indicate that the fcc phase of iron can exist in the pressure-temperature region above 160 GPa and 3700 K, respectively. This, in particular, means that the actual structure of the Earth's core may be a complex phase with a large number of stacking faults.

Projektbezogene Publikationen (Auswahl)

  • Collapsed hexagonal omega phase in a compressed TiZr alloy: Angle-dispersive synchrotron-radiation x-ray diffraction study”, Physical Review B, Vol. 73. 2006, 094114.
    V. P. Dmitriev, L. Dubrovinsky, T. Le Bihan, A. Kuznetsov, H.-P. Weber, E. G. Poniatovsky
    (Siehe online unter https://dx.doi.org/10.1103/PhysRevB.73.094114)
  • Compressibility of Boron Doped Diamond. High Pressure Research: An International Journal, Vol. 26. 2006, Issue 2, pp. 79-85.
    N. A. Dubrovinskaia, L. S. Dubrovinsky, W. A. Crichton, E. Yu. Zarechnaya, E. I. Isaev, and I. A. Abrikosov
    (Siehe online unter https://dx.doi.org/10.1080/08957950600764353)
  • Compressibility of Boron Doped Diamond. High Pressure Research: An International Journal, Vol. 26. 2006 , Issue 2, pp. 79-85.
    N. A. Dubrovinskaia, L. S. Dubrovinsky, W. A. Crichton, E. Yu. Zarechnaya, E. I. Isaev, and I. A. Abrikosov
    (Siehe online unter https://dx.doi.org/10.1080/08957950600764353)
  • Measuring the speed of sound in an iron-nickel alloy at high pressure by inelastic X-ray scattering, Doklady Akademii Nauk = Proceedings of the Russian Academy of Sciences: Physics, Vol. 51. 2006, Issue 11, pp 584-587.
    Kantor I. Yu., Dubrovinsky L. S., Krisch M., Bossak A., Urusov V.
    (Siehe online unter https://dx.doi.org/10.1134/S1028335806110024)
  • Body-Centered Cubic Iron-Nickel Alloy in Earth's Core. Science, Vol. 316. 2007, no. 5833, pp. 1880-1883.
    L. Dubrovinsky, N. Dubrovinskaia, O. Narygina, A. Kuznetzov, V. Prakapenka, L. Vitos, B. Johansson, A. S. Mikhaylushkin, S. I. Simak, I. A. Abrikosov
    (Siehe online unter https://dx.doi.org/10.1126/science.1142105)
  • Effect of non-hydrostatic conditions on the elastic behaviour of magnetite: an in situ single-crystal X-ray diffraction study. Physics and Chemistry of Minerals, Vol. 34. 2007, Issue 9, pp 627-635.
    G. D. Gatta GD, I. Kantor, T. B. Ballaran, L. S. Dubrovinsky, C. McCammon
    (Siehe online unter https://dx.doi.org/10.1007/s00269-007-0177-3)
  • Phase transition in CaSiO3 perovskite. Earth and Planetary Science Letters, Vol. 260. 2007, Issues 3–4, 30 pp. 564–569.
    T. Komabayashi, K. Hirose, N. Sata, Y. Ohishi, L. Dubrovinsky
    (Siehe online unter https://dx.doi.org/10.1016/j.epsl.2007.06.015)
  • Pure iron compressed and heated to extreme conditions. Physical Review Letters (PRL), Vol. 99. 2007, 165505.
    A. Mikhailushkin, S. I. Simak, L. S. Dubrovinsky, N. A. Dubrovinskaia, B, Johansson, I. A. Abrikosov
    (Siehe online unter https://dx.doi.org/10.1103/PhysRevLett.99.165505)
  • Sound wave velocities of fcc Fe-Ni alloy at high pressure and temperature by mean of inelastic X-ray scattering. Physics of the Earth and Planetary Interiors, Vol. 164. 2007, Issues 1–2, pp. 83–89.
    A. P. Kantor, I. Yu. Kantor, A. V. Kurnosov, A. Y. Kuznetsov, N. A. Dubrovinskaia, M. Krisch, A. A. Bossak, V. P. Dmitriev, V. S. Urusov, L. S. Dubrovinsky
    (Siehe online unter https://dx.doi.org/10.1016/j.pepi.2007.06.006)
  • Temperature- and pressure-driven spin-state transitions in LaCoO3. Physical Review B, Vol. 75. 2007, 064422.
    Kozlenko D. P., Golosova N. O., Jirak Z., Dubrovinsky L. S., Savenko B. N., Tucker M. G., Le Godec Y., Glazkov V. P.
    (Siehe online unter https://dx.doi.org/10.1103/PhysRevB.75.064422)
  • The noblest of all metals is structurally unstable at high pressure. Physical Review Letters (PRL), Vol. 98. 2007, 045503.
    L. S. Dubrovinsky, N. A.Dubrovinskaia, W. A. Crichton, A. S. Mikhaylushkin, S.I. Simak, I. A. Abrikosov, J. S. de Almeida, R. Ahuja, W. Luo, B. Johansson,
    (Siehe online unter https://dx.doi.org/10.1103/PhysRevLett.98.045503)
  • A novel gas-loading system for mechanically closing of various types of diamond anvil cells. Review of Scientific Instruments, Vol. 79. 2008, Issue 4, 045110.
    A. Kurnosov, I. Kantor, T. Boffa-Ballaran, S. Lindhardt, L. Dubrovinsky, A. Kuznetsov, B. H. Zehnder
    (Siehe online unter https://dx.doi.org/10.1063/1.2902506)
  • Anelasticity of FexO at high pressure. Applied Physics Letters, Volume 93. 2008, Issue 3, 034106.
    A. Kantor, I. Kantor, A. Kurnosov, L. Dubrovinsky, M. Krisch, A. Bossak, S. Jacobsen
    (Siehe online unter https://dx.doi.org/10.1063/1.2952274)
  • Ground state properties of Boron doped Diamond. Journal of Experimental and Theoretical Physics, Vol. 106. 2008, Issue 4, pp 781-787.
    E. Yu. Zarechnaya, E.I. Isaev, S.I. Simak, Yu.Kh. Vekilov, N. A. Dubrovinskaia, L. S. Dubrovinsky, and I.A. Abrikosov
    (Siehe online unter https://dx.doi.org/10.1134/S1063776108040171)
  • High-Pressure Studies of (Mg0.9Fe0.1)2 SiO4 Olivine Using Raman Spectroscopy, X-ray Diffraction, and Mössbauer Spectroscopy. Inorganic Chemistry, Vol. 47. 2008, Issue 7, pp 2668–2673.
    J. Rouquette, I. Kantor, C. McCammon, V. Dmitriev, L. Dubrovinsky
    (Siehe online unter https://dx.doi.org/10.1021/ic701983w)
  • Hyperspectral µ-XANES mapping in the diamond-anvil cell: Analytical procedure applied to the decomposition of (Mg,Fe)-ringwoodite at the upper/lower mantle boundary. High Pressure Research: An International Journal, Vol. 28. 2008, pp. 665-673.
    M. Muñoz, S. Pascarelli, G. Aquilanti, O. Narygina, L. Dubrovinsky
    (Siehe online unter https://dx.doi.org/10.1080/08957950802517625)
  • Simultaneous volume measurements of post-perovskite and perovskite in MgSiO3 and their thermal equations of state. Earth and Planetary Science Letters, Vol. 265. 2008, Issues 3–4, pp. 515–524.
    T. Komabayashi, K. Hirose, E. Sugimura, N. Sata, Y. Ohishi, L. S. Dubrovinsky
    (Siehe online unter https://dx.doi.org/10.1016/j.epsl.2007.10.036)
  • Stable intermediate-spin ferrous iron in lower-mantle perovskite, Nature Geosciences, Vol. 1. 2008, pp. 684 - 687.
    C. McCammon, I. Kantor, O. Narygina, J. Rouquette, U. Ponkratz, I. Sergeev, M. Mezouar, V. Prakapenka, L. Dubrovinsky
    (Siehe online unter https://dx.doi.org/10.1038/ngeo309)
  • Influence of global magnetic state on chemical interactions in high-pressure high-temperature synthesis of B2 Fe2Si, Applied Physics Letters, Vol. 94. 2009, Art. Num. 181912.
    A. V. Ponomareva, A. V. Ruban, N. Dubrovinskaia, L. Dubrovinsky, I. A. Abrikosov
    (Siehe online unter https://dx.doi.org/10.1063/1.3131784)
  • Structural stability of the Sigma phase FeCr under pressure up to 77 GPa, Journal of Physics: Condensed Matter, Vol. 21. 2009, Art. Num. 075706.
    V. F. Degtyareva, L. Dubrovinsky, A. Kurnosov
    (Siehe online unter https://dx.doi.org/10.1088/0953-8984/21/7/075706)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung