Project Details
Projekt Print View

Mineralogy and Chemistry of Earth`s core (MCEC) (FP 08)

Subject Area Mineralogy, Petrology and Geochemistry
Term from 2006 to 2011
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 18592059
 
Final Report Year 2011

Final Report Abstract

The Earth’s core is the most remote region on our planet. The boundary of the core is at about 2900 km in depth. Spacecrafts have reached outer planets, hundreds of millions km away from the Earth, but the deepest drill hole has only reached less than 12 km below the Earth’s surface. Not only do we not have samples from the core, we do not even expect to get any. To date, the most direct observations of the core have come from seismological studies using remote-sensing techniques. Due to the complex internal structure of the Earth, seismic investigations require extensive data coverage and appropriate models. Decoding geochemical signature of the core carried by mantle plumes faces similar challenges. Experimental and computational simulations have been hindered by the necessity to approach pressures over 140 GPa and temperatures above 3000 K prevalent in the core. For these reasons, many fundamental issues concerning the Earth’s core remain controversial and poorly understood. We studied iron-nickel alloy Fe0.9Ni0.1 in situ by means of the angle dispersive X-ray diffraction in internally heated diamond anvil cells (DACs) and measured its resistance as a function of pressure and temperature. At pressures above 225 GPa and temperatures over 3400 K Fe0.9Ni0.1 adopts the bcc structure. Our experimental and theoretical results not only support the interpretation of shockwave data on pure iron as a solid-solid phase transition above ~200 GPa, but also suggest that iron alloys with geochemically reasonable compositions (e.g. with significant nickel, sulfur, or silicon content) adopt the bcc-structure in the Earth’s inner core. First-principles study supported by the temperature-quenched laser-heated diamond anvil-cell experiments on the high-pressure high-temperature structural behaviour of pure iron has been carried out. We have shown that in contrast to the widely accepted picture, the face-centered cubic (fcc) phase becomes as stable as the hexagonal closepacked (hcp) phase at pressures around 300-360 GPa and temperatures around 5000-6000 K. Our temperature-quenched experiments indicate that the fcc phase of iron can exist in the pressure-temperature region above 160 GPa and 3700 K, respectively. This, in particular, means that the actual structure of the Earth's core may be a complex phase with a large number of stacking faults.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung