Detailseite
Projekt Druckansicht

Inkrementelles Data Mining für multi-relationale Objekte

Fachliche Zuordnung Sicherheit und Verlässlichkeit, Betriebs-, Kommunikations- und verteilte Systeme
Förderung Förderung von 2011 bis 2016
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 192491950
 
Data Mining Methoden für Datenströme basieren auf der Annahme, dass jede Dateninstanz nur einmal bearbeitet wird. Zum Beispiel liest ein Verfahren, das Netzangriffe- zu erkennen lernt, jede Dateninstanz nur einmal und passt das abgeleitete Modell neuen Arten von Angriffen an. Bei vielen Anwendungen sind die Daten jedoch nicht einfache Dateninstanzen, sondern komplexe, verschachtelte Objekte, deren Bestandteile Ströme von Dateninstanzen sind. Die Information zu einem Kunden besteht zum Beispiel aus Stammdaten, die sich im Laufe der Zeit ändern können, und aus Transaktionen wie Käufe, Retouren oder Produktrezensionen. Wenn ein Unternehmen eine Kundensegmentierung durchführen und diese Segmente aktuell halten will, benötigt es Lernverfahren, die die Modelle aus den Stammdaten und den Transaktionen ableiten und kontinuierlich aktualisieren.Im Vorhaben IMPRINT unterscheiden wir zwischen permanenten Objekten, die selbst Dateninstanzen beinhalten, und den Dateninstanzen selber; letztere reichern in Form eines Datenstroms die permanenten Objekte über die Zeit an. Die Herausforderungen beim adaptiven Lernen auf permanenten Objekten umfassen die Analyse von Objekten, die durch das Hinzufügen von Dateninstanzen unterschiedlich schnell wachsen, den Vergleich von Objekten unterschiedlicher Größe und Alters- und den Bedarf nach effizienter Hauptspeicherverwaltung. Im Projekt IMPRINT werden wir adaptive Lernverfahren konzipieren, entwickeln und evaluieren, die diesen Anforderungen Genüge tun.
DFG-Verfahren Sachbeihilfen
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung