Sedimentology of coastal and lagoon deposits in the Seychelles islands - evidence of the 2004 Indian ocean tsunami and other high energy wave events
Zusammenfassung der Projektergebnisse
The Seychelles were severely affected by the December 26, 2004 tsunami in the Indian Ocean. Since the tsunami history of small islands often remains unclear due to a young historiography we conducted a study of onshore tsunami deposits on the Seychelles in order to understand the scale of impact of the 2004 Indian Ocean tsunami and potential predecessors. As part of this project we found and studied onshore tsunami deposits in the mangrove forest at Old Turtle Pond bay on the east coast of Curieuse Island. The 2004 Indian Ocean tsunami caused a change of habitat due to sedimentation of an extended sand sheet in the mangrove forest. We present results of the first detailed sedimentological study of onshore tsunami deposits of the 2004 Indian Ocean tsunami conducted on the Seychelles. The Curieuse mangrove forest at Old Turtle Pond bay is part of the Curieuse Marine National Park. It is thus protected from anthropogenic interference. Towards the sea it was shielded until the tsunami by a 500 m long and 1.5 m high causeway which was set up in 1909 as a sediment trap. The causeway was destroyed by the 2004 Indian Ocean Tsunami. The silt to fine sand sized and organic rich mangrove soil was subsequently covered by carbonate fine to medium sand (1.5 to 2.1 Φ) containing coarser carbonate shell debris which had been trapped outside the mangrove bay before the tsunami. The tsunami deposited a sand sheet which is organized into different lobes. They extend landwards to different inundation distances as a function of morphology. Maximum inundation distance is 200 m. The sediments often cover the pneumatophores of the mangroves. No landward fining trend of the sand sheet has been observed. On the different sand lobes carbonate-cemented sandstone debris ranging in size from 0.5 up to 12 cm occurs. Also numerous mostly fragmented shells of bivalves and molluscs were distributed on top of the sand lobes. Intact bivalve shells were mostly positioned with the convex side upwards. On small ledges of a granitic body at 120 m from the shore fragmented and complete shells were deposited at different elevations of up to 4 m. This implies a run up height of at least 4 m above sea level at this distance from the shore. Our study presents the mapping of the tsunamigenic sand lobes, their grain size distribution and petrographic variations of their components compared to the mangrove soil. The difference in the grain size and amount of organic material of the mangrove soil compared to the sand lobes indicate that the coarser material was entrained from outside of the mangrove forest by the tsunami. The similarity of the grain size distributions of the sediment of the sand lobes and of a reference beach/intertidal sample suggests the lagoon between the mangrove forest and the causeway as the probable sediment source area. The fact that the mangrove forest is surrounded by granitic hills and the appearance of the carbonate sandstone debris mostly on the surface of the sand sheets supports this assumption.
Projektbezogene Publikationen (Auswahl)
- (2014): Sedimentology of coastal deposits in the Seychelles islands – evidence of the Indian Ocean tsunami 2004. Pure and Applied Geophysics
Nentwig, V., Bahlburg, H., Monthy, D.
(Siehe online unter https://doi.org/10.1007/s00024-014-0990-9)