Detailseite
Projekt Druckansicht

Boltzmann Zugang zum gekoppelten Spin- und Wärmetransport in Ferromagneten

Antragsteller Professor Dr. Felix von Oppen, seit 10/2016
Fachliche Zuordnung Theoretische Physik der kondensierten Materie
Förderung Förderung von 2011 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 198246422
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

5. Summary of activities The scientific reports of the projects will be published in a special issue on Spincaloritronics in the Journal of Physics D (http://iopscience.iop.org/journal/0022-3727/page/Special-issue-on- Spincaloritronics). This special issue is expected to be completed in the fall of 2018. Below, we briefly summarize the highlights of each project. Ansermet (Lausanne): The SPINCAT project has been very important because it is during this time that my group was able to establish the theory of heat-driven spin torques in insulators and verify this theory experimentally. We introduced the notion of a magnetic Seebeck effect and showed that the propagation of a wave packet was less attenuated when going from cold to hot than conversely. We derived a quantitive model based on a modified Landau-Lishitz equation and could account for all the spectroscopic data we accumulated. Back/Strunk (Regensburg): We have clarified inconsistent evidence from different experiments in the literature, by showing that the so-called transversal spin-Seebeck effect in metals is unobservably small, when compared to the competing (established) magnetothermoelectric effects. In the course of these efforts, we have established an experimental platform for the simultaneous measurement of the electric, thermoelectric and thermal transport coefficients of metal films. The platform was applied to the alloy system FeCo, which allows to systematically tune the Fermi energy through the band structure, and investigated the evolution of the transport properties with composition. Most prominent result is a pronounced magnon drag contribution to the thermopower that changes sign at xCo~0.6. Bauer (Tohoku/Delft): We carried out theoretical research on spin caloritronic phenomena with emphasis on the magnetic insulator yttrium iron garnet using a combination of analytic and numerical techniques. In collaboration with experimental groups in the Priority Program we helped discover new effects such as the spin Hall magnetoresistance. Belzig (Konstanz): We have predicted effcient cooling of spin-split superconducting devices using spin-polarized currents in multi-terminal geometries and in the non-linear regime. We have developed the theory of strongly spin-dependent boundary conditions for quasiclassical Greens functions to describe electric, thermal and spin transport far from equilibrium. We have predicted spin-polarized Shiba bands at interfaces between a 10 SPP 1538 „Spin Caloric Transport“ strongly spin-polarized magnetic insulator and a superconductor, which can be used for long-range spin transport of heat and charge. Deac/Lindner (Dresden): The main achievement of the project was to develop and fabricate a microresonator-based setup to investigate thermal spin-torque effects in layered thin film structures under the presence of a thermal gradient. The latter is generated by laser heating, while the influence of the thermal gradient on the spin-torque properties is monitored by microwave absorption. The setup enables one to investigate single mesoscopic samples without need of any electrical contacts. Demokritov (Münster): We have studied the interaction of thermal gradients introduced by spin waves with electrons in graphene. We have demonstrated a dc electric field/voltage in graphene as a response to the dynamic magnetic excitations in an adjacent out-ofplane magnetized YIG film. We show that the induced voltage changes its sign when the orientation of the static magnetization is reversed, clearly indicating the broken mirror reflection symmetry about the planes normal to the graphene/YIG interface. In addition, we show that, due to the refraction of spin waves in the thermal gradients, the heated region acts as a defocusing lens for Damon-Eshbach spin waves and as a focusing for backward volume modes. Finaly, we have shown that spin waves under influence of spin current obey the thermodynamic Bose-Einstein statistics with a non-zero chemical potential. Fabian (Regensburg): The standard theory of spin, charge, and heat transport was formulated and tunneling spin caloric effects in ferromagnetic junctions were predicted. The suitability black phosphorous and phosphorene for spin transport application were established. Using DFT methods spin relaxation time in phosphorene was calculated and its large anisotropy was predicted. Goennenwein/Gross (Dresden/Garching): Within SPP 1538, we successfully established the pulsed laser epitaxy of high quality yttrium iron garnet (Y3Fe5O12) as well as gadolinium iron garnet (Gd3Fe5O12) thin films and heterostructures (see, e.g., Althammer et al., Phys. Rev. B 87, 224401 (2013)). Furthermore, in collaboration with colleagues in Japan, we discovered the so-called spin Hall magnetoresistance effect (Nakayama et al, Phys. Rev. Letters 110, 206601 (2013)), which arises from spin transfer across a magnetic insulator/metal interface. Finally, we experimentally observed the spin Nernst effect in Pt (Meyer et al, Nat. Mat. 16, 977 (2017)). Grundler (Lausanne): In our project we prepared ferromagnetic nanotubes on semiconductor nanowires and investigated their domain configurations depending on different materials. Using a scanning laser focus we generated thermal gradients and performed spatially resolved investigations on the anomalous Nernst effect. Exploiting the grating coupler effect and ferroelectric/ferromagnetic hybrid structures we explored the generation of exchange-dominated spin waves with wavelengths smaller than 100 nm. 11 SPP 1538 „Spin Caloric Transport“ Kampfrath (Berlin): We successfully transferred central spintronic effects to highest (i.e. Terahertz) frequencies, including the spin-dependent/spin Seebeck effect to generate spin currents and the inverse spin Hall effect to convert these spin currents into charge currents. We took advantage of these effects to build a spintronic emitter of Terahertz electromagnetic pulses that cover the full range from 1 to 30 THz with an efficiency comparable or even better than standard Terahertz sources. Moreover, we revealed the elementary steps leading to the formation of the spin-Seebeck effect in archetypal YIG|Pt bilayers whose ultrafast rise is determined by the thermalization dynamics of the optically excited electrons in Pt. Kläui (Mainz): We demonstrated in a joint experimental and theoretical work that the spin Seebeck effect can generate spin currents in the bulk of an insulating ferrimagnet. By varying materials and interfaces, we identified different magnon modes that contribute to the spin transport generated by a heat current experimentally. Theoretical calculations analyzed the effect of thermal spin currents on the displacement of domain walls. Kratzer/Popescu (Duisburg): The anistropic magnetothermopower in ferromagnetic/nonmagnetic heterostructures is much larger than the corresponding anisotropic magnetoresistance, a feature that could be related to quantum well states occurring in the minority spin channel of the nonmagnetic partner. Heterostructures formed between Heusler alloys and nonmagnetic leads (Al, Pd, Pt) are stable upon formation, may provide a measurable spin accumulation, but the transport properties of the Heusler systems may vary significantly as a result of unintentional, intrinsic doping. Krause (Hamburg): Using a spin-polarized scanning tunneling microscope at low temperature, we realized model-type magnetic tunnel junction experiments with well-defined interfaces and vacuum serving as tunnel barrier between a magnetic probe tip and an ultrathin film sample exhibiting a inhomogeneous spin spiral. A temperature drop at the junction is generated and controlled by heating only the scanning probe tip with a laser beam. Recording the thermovoltage at the junction while scanning the tip above the magnetic surface we precisely measured angel-resolved coefficients for magneto- Seebeck tunneling across a vacuum barrier. Kuschel (Bielefeld): As main achievements of this project we investigated alternative spin Seebeck effect (SSE) detection methods using magnetooptic techniques instead of the classical electrical detection based on the inverse spin Hall effect [Kimling et al., Phys. Rev. Lett. 118, 057201 (2017); Kehlberger et al., Phys. Rev. Appl. 4, 014008 (2015)] avoiding parasitic thermoelectric effects. However, we further found a way to separate the thermoelectric effects from the SSE for the electrical detection [Bougiatioti et al., Phys. Rev. Lett. 119, 227205 (2017)], thus observing the SSE in metals. For this achievement two new techniques had to be used, which we have introduced to the spin caloric community, this is synchrotron-based x-ray resonant magnetic reflectivity [Kuschel et al., Phys. Rev. Lett. 115, 097401 (2015); Klewe et al., Phys. Rev. B 93, 214440 (2016)] for the detection of the magnetic proximity effect in Pt and the heat flux detection method [Sola et al., Sci. 12 SPP 1538 „Spin Caloric Transport“ Rep. 7, 46752 (2017)] to reliably compare SSE signals from different samples and between different setups. We further studied the non-local SSE [Shan et al., Phys. Rev. B 94, 174437 (2016), Shan et al., Appl. Phys. Lett. 110, 132406 (2017), Liu et al., Phys. Rev. B 95, 140402(R) (2017), Cornelissen et al., Phys. Rev. B 96, 104441 (2017)] during a 18-month research stay of the PI at the University of Groningen, Netherlands. Kuschel/Reiss/Schmalhorst (Bielefeld): We could refute the experimental observation of the transverse spin Seebeck effect in metals [Schmid et al., Phys. Rev. Lett. 111, 187201 (2013); Meier et al., Phys. Rev. B 88, 184425 (2013); Shestakov et al., Phys. Rev. B 92, 224425 (2015)] and insulators [Meier et al., Nat. Commun. 6, 8211 (2015)], while we observed the longitudinal spin Seebeck effect in nickel ferrite for the first time [Meier et al., Phys. Rev. B 87, 054421 (2013)]. Beside these two geometries with fixed orientation of the thermal gradient, we developed a new tool to generate a thermal gradient in various in-plane directions [Reimer et al., Sci. Rep. 7, 40586 (2017)] for anisotropy studies of thermoelectric and spin caloric effects. Furthermore, we observed the tunnel magneto- Seebeck effect in magnetic tunnel junctions [Walter et al., Nat. Mater. 10, 742 (2011); Liebing et al., Phys. Rev. Lett. 107, 177201 (2011)], studied parasitic effects [Boehnke et al., Rev. Sci. Instrum. 84, 063905 (2013); Huebner et al., Phys. Rev. B 93, 224433 (2016)] and increased the effect sizes by choosing proper material properties for the tunnel barrier [Huebner et al., Phys. Rev. B 96, 214435 (2017)] and the electrodes [Boehnke et al., Nat. Commun. 8, 1626 (2017)] or by applying a bias voltage [Boehnke et al., Sci. Rep. 5, 8945 (2015)]. Mertig (Halle): Topology has conquered the field of condensed matter physics with the discovery of the quantum Hall effect. Since then the zoo of topological materials is steadily increasing. In this project, we discovered how to realize different topological phases with magnons: the magnon pendants to topological insulators as well as Weyl and nodal-line semimetals are presented. Similar to the electronic case, nonzero Berry curvature causes transverse transport, that is, magnon Hall effects. We developed a method to show how these effects can be quantified by classical spin dynamics simulations. Mokrousov (Jülich): Within our project, we applied various ab-initio-based techniques to study thermal transport and response characteristics of complex magnetic materials, with a particular focus on the origin of these phenomena in the underlying topology of the electronic structure in the reciprocal space. On the side of transport properties, the main achievements of the project in the course of the SpinCat were the predictions concerning the topological part of the anomalous Nernst and spin Nernst effects in elemental ferromagnets and paramagnets. In addition, we have pioneered the effects related to the manipulation of the magnetization in ferromagnets by applied thermal gradients, i.e. the effect of thermal spin-orbit torque, as well as the effect of generation of thermal currents by magnetization dynamics via the effect of the inverse spin-orbit torque. Our road to these milestones lead to exiting developments in the area of chiral magnetism and current-driven magnetization dynamics. 13 SPP 1538 „Spin Caloric Transport“ Molenkamp/Gould (Würzburg): We mapped out the diffusive thermopower and Nearnst contributions in the ferromagnetic semiconductor (Ga,Mn)As. These show very large anisotropy contributions, which relate to the direction of the magnetization in the crystal, which yield additional insight on the details of the band structure in this material. Münzenberg: We have published a public outreach article in in the Greman journal “Physik unserer Zeit”: Vom Seebeck-Effekt zur Spinkaloritronik - Heiße Elektronik, A. Thomas, M. Münzenberg, Physik in unserer Zeit 6, (2012). In the first period we developed the idea of extreme temperature gradient by femtosecond lasers and thermal spin torques (J. C. Leutenantsmeyer, et al, SPIN 3, 1350002 (2013).) which was a close theory and experimental work with the Heiliger group (joint publictaions), but also Hans Werner Schumachers project at the PTB. During that period we also discovered the emission of THz radiation from femtosecond laser driven double layers, a breakthrough opening a novel field of THz spintronics, which can be seen as a kind of ultrafast spin-dependent Seebeck effect with inverse spin Hall effect (T. Kampfrath, et al, Nat. Nano. 8, 256 (2013). This led to a new project for the second period, led by Tobias Kampfrath, FHI Berlin. In the last period, we focused on new materials (Heusler electrodes), novel oxide barriers and in especial and increase of the lateral resolution of temperature gradients to extend a magnetic memory to three dimensions by using thermocurrent-maps with spatial resolution. This allows the controlled application of also of lateral heat gradients and we can generate different voltage signals, giving separation x-y-z direction independently at around a single tunnel junction. We identify the Anomalous Nernst effect (ANE) for the first time inside a single micron sized magnetic tunnel junction (MTJs). Latest experiments show that by detecting the ANE much more sensitively and on smaller length scales by the tunnel junction, opens new possibilities for three-dimensional applications based on this effect. Nowak (Konstanz): We demonstrated in a joint experimental and theoretical work that the spin Seebeck effect can generate spin currents in the bulk of insulating ferri- and antiferromagnets and we explored the possible application of this effect in a magnonic spin valvue device. By varying materials and interfaces, we identified different magnon modes that contribute to the spin transport generated by a heat current experimentally. Theoretical calculations analyzed the effect of thermal spin currents on the displacement of domain walls. Schumacher (Braunschweig): Among the highlights of the project of Santiago Serrano-Guisan and Hans Werner Schumacher were the measurement of the tunnel magneto thermo power and tunnel magneto thermo current of nanopatterned magnetic tunnel junctions. Furthermore, the magneto Seebeck contribution of a single domain wall in a magnetic nanowire was experimentally accessed for the first time. As an extension of this work, the anomalous Nernst effect was established as a tool to measure domain wall propagation in magnetic nanowires with nano scale resolution. 14 SPP 1538 „Spin Caloric Transport“ Vasyuchka (Kaiserslautern): In this project, linear and nonlinear phenomena induced by coherently excited magnon currents in the presence of a thermal gradient were investigated and a high level of understanding was achieved. A new approach for creation of fully tunable, two-dimensionally structured magnetic materials was proposed and realized: it was shown that thermal landscape created by a laser heating in a magnetic insulator results in modulations of the saturation magnetization and in the control of spinwave characteristics. As well, key characteristics of parametric processes in a magnetic insulator – normal metal structures subject to a thermal gradient were revealed for both dipolar and exchange magnons. It is found, e.g., that the parametric instability threshold strongly depends on the temperature of the spin-wave excitation area, whereas temperature gradients do not influence the threshold. Vasyuchka/Serga/Hillebrands (Kaiserslautern): The project was focused on the investigation of magnon currents generated by a thermal gradient in low-damping magnetic structures and on understanding the dynamic and static magnon Seebeck effect in hetero-structures comprising non-magnetic metals and low-damping magnets. It was found that the temporal dynamics of the longitudinal spin Seebeck effect in the ferromagneticinsulator/normal-metal system depends on the diffusion of bulk thermal magnons in the thermal gradient and can be described by a characteristic magnon diffusion length. From the transient voltage response of yttrium iron garnet/platinum bilayers subject to periodic heating the characteristic response times were identified, which depend on the thickness of the magnetic layer and can drop down to the nanosecond timescale. Zierold/Nielsch (Hamburg): Magnetic-field dependent electrical and thermal transport properties have been successfully studied on metallic multilayer thin films and nanowires. Novel approaches for the characterization of the thermovoltage/Seebeck coefficient as well as the measurement of the thermal conductivity on nanostructures have been developed and assigned to research fields such as investigation of Topological Insulators and Wey semimetals. Finally, the influence of temperature gradients on the magnetization reversal of magnetic nanowires have been explored revealing that a stressinduced magneto-elastic anisotropy can counteract a thermally assisted magnetization reversal process.

Projektbezogene Publikationen (Auswahl)

  • Angular momentum transfer torques in spin valves with perpendicular magnetization. Phys. Rev. B 84, 134403 (2011)
    X. Jia, Y. Li, K. Xia, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.84.134403)
  • Domain wall motion by the magnonic spin Seebeck effect. Phys. Rev. Lett. 107, 027205 (2011)
    D. Hinzke and U. Nowak
    (Siehe online unter https://doi.org/10.1103/physrevlett.107.027205)
  • Energy Partitioning of Tunneling Currents into Luttinger Liquids. Phys. Rev. Lett.107, 176403 (2011)
    T. Karzig, G. Refael, L.I. Glazman, F. von Oppen
    (Siehe online unter https://doi.org/10.1103/physrevlett.107.176403)
  • Feedback control of noise in spin valves by the spin-transfer torque. Appl. Phys. Lett. 98, 083110 (2011)
    S. Bandopadhyay, A. Brataas, G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1063/1.3556270)
  • Focused crossed Andreev reflection. Europhys. Lett. 93, 67005 (2011)
    H. Haugen, A. Brataas, X. Waintal and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1209/0295-5075/93/67005)
  • Heat-driven spin currents on large scales. Physica Status Solidi (RRL), 1862-6270 (2011)
    S. D. Brechet, J.-Ph. Ansermet
    (Siehe online unter https://doi.org/10.1002/pssr.201105180)
  • Macrospin Tunneling and Magnetopolaritons with Nanomechanical Interference. Phys. Rev. Lett. 106, 147203 (2011)
    A.A. Kovalev, L.X. Hayden, G.E.W. Bauer, and Y. Tserkovnyak
    (Siehe online unter https://doi.org/10.1103/physrevlett.106.147203)
  • Magnetization dissipation in ferromagnets from scattering theory. Phys. Rev. B 84, 054416 (2011)
    A. Brataas, Y. Tserkovnyak, G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.84.054416)
  • Magneto-Seebeck effect in magnetic tunnel junctions. Nat. Mat. 10, 742 (2011)
    M. Walter, J. Walowski, V. Zbarsky, M. Münzenberg, M. Schäfers, D. Ebke, G. Reiss, A. Thomas, P. Peretzki, M. Seibt, J.S. Moodera, M. Czerner, M. Bachmann, and C. Heiliger
    (Siehe online unter https://doi.org/10.1038/nmat3076)
  • Spin caloritronics in magnetic tunnel junctions: Ab initio studies. Phys. Rev. B 83, 132405 (2011)
    M. Czerner, M. Bachmann, and C. Heiliger
    (Siehe online unter https://doi.org/10.1103/PhysRevB.83.132405)
  • Spin transfer torque on magnetic insulators. Eurphys. Lett. 96, 17005 (2011)
    X. Jia, K. Liu, K. Xia, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1209/0295-5075/96/17005)
  • Thermal Spin Transfer in Fe-MgO-Fe Tunnel Junctions. Phys. Rev. Lett. 107, 176603 (2011)
    X. Jia, K. Xia, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/physrevlett.107.176603)
  • Tunneling magneto thermos power in magnetic tunnel junction nanopillars. Phys. Rev. Lett. 107, 177201 (2011)
    N. Liebing, S. Serrano-Guisan, K. Rott, G. Reiss, J. Langer, B. Ocker, and H.W. Schumacher
    (Siehe online unter https://doi.org/10.1103/physrevlett.107.177201)
  • Viewpoint: Spin-magnon transmutation. Physics 4, 40 (2011)
    G.E.W. Bauer and Y. Tserkovnyak
    (Siehe online unter https://doi.org/10.1103/Physics.4.40)
  • Anisotropy of spin relaxation in metals. Phys. Rev. Lett. 109, 236603 (2012)
    B. Zimmermann, Ph. Mavropoulos, S. Heers, N.H. Long, S. Blügel and Y. Mokrousov
    (Siehe online unter https://doi.org/10.1103/physrevlett.109.236603)
  • Anomalous Hall effect in the Co-based Heusler compounds Co2FeSi and Co2FeAI. J. Appl. Phys. 111, 07D313 (2012)
    I.-M. Imort, P. Thomas, G. Reiss, and A. Thomas
    (Siehe online unter https://doi.org/10.1063/1.3678323)
  • Determination of spin-dependent Seebeck coefficients of CoFeB/MgO/CoFeB magnetic tunnel junction nanopillars. J. Appl. Phys. 111, 07C520 (2012)
    N. Liebing, S. Serrano-Guisan, K. Rott, G. Reiss, J. Langer, B. Ocker, and H.W. Schumacher
    (Siehe online unter https://doi.org/10.1063/1.3679769)
  • Domain Wall Propagation through Spin Wave Emission. Phys. Rev. Lett. 109, 167209 (2012)
    X.S. Wang, P. Yan, Y.H. Shen, G.E.W. Bauer, and X.R. Wang
    (Siehe online unter https://doi.org/10.1103/physrevlett.109.167209)
  • Enhancement of the spin Hall angle by quantum confinement. Phys. Rev. B 85, 195133 (2012)
    C. Herschbach, M. Gradhand, D.V. Fedorov, and I. Mertig
    (Siehe online unter https://doi.org/10.1103/PhysRevB.85.195133)
  • Extrinsic Spin Nernst Effect from First Principles. Phys. Rev. Lett. 109, 026601 (2012)
    K. Tauber, M. Gradhand, D.V. Fedorov, and I. Mertig
    (Siehe online unter https://doi.org/10.1103/physrevlett.109.026601)
  • First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons. J. Phys.: Condens. Matter 24, 213202 (2012)
    M. Gradhand, D.V. Fedorov, F. Pientka, P. Zahn, I. Mertig, and B.L. Györffy
    (Siehe online unter https://doi.org/10.1088/0953-8984/24/21/213202)
  • Gauge freedom for degenerate Bloch states. Phys. Rev. B 86, 054413 (2012)
    F. Pientka, M. Gradhand, D.V. Fedorov, I. Mertig, and B.L. Györffy
    (Siehe online unter https://doi.org/10.1103/PhysRevB.86.054413)
  • High propagating velocity of spin waves and temperature dependent damping in a CoFeB thin film. Appl. Phys. Lett. 100, 262412 (2012)
    H. Yu, R. Huber, T. Schwarze, F. Brandl, T. Rapp, P. Berberich, G. Duerr, and D. Grundler
    (Siehe online unter https://doi.org/10.1063/1.4731273)
  • Influence of interface termination on the magneto-Seebeck effect in MgO based tunnel junctions. J. Appl. Phys. 111, 07C511 (2012)
    M. Czerner and C. Heiliger
    (Siehe online unter https://doi.org/10.1063/1.3675987)
  • Insights into Ultrafast Demagnetization in Pseudogap Half-Metals. Phys. Rev. X, 041008 (2012)
    A. Mann, J. Walowski, M. Münzenberg, S. Maat, M. J. Carey, J. R. Childress, C. Mewes, D. Ebke, V. Drewello, G. Reiss, A. Thomas
    (Siehe online unter https://doi.org/10.1103/PhysRevX.2.041008)
  • Investigation of induced Pt magnetic polarization in Pt/Y3Fe5O12 bilayers. Appl. Phys. Lett. 101, 262407 (2012)
    S. Geprägs, S. Meyer, S. Altmannshofer, M. Opel, F. Wilhelm, A. Rogalev, R. Gross, S.T.B. Goennenwein
    (Siehe online unter https://doi.org/10.1063/1.4773509)
  • Local charge and spin currents in magnetothermal landscapes. Phys. Rev. Lett. 108 106602 (2012)
    M. Weiler, M. Althammer, F. D. Czeschka, H. Huebl, M.S. Wagner, M. Opel, I.-M. Imort, G. Reiss, A. Thomas, R. Gross, and S.T.B. Goennenwein
    (Siehe online unter https://doi.org/10.1103/physrevlett.108.106602)
  • Magnonic Domain Wall Heat Conductance in Ferromagnetic Wires. Phys. Rev. Lett. 109, 087202 (2012)
    P. Yan and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/physrevlett.109.087202)
  • Perfect Alloys for Spin Hall Current-Induced Magnetization Switching. SPIN 2, 1250010 (2012)
    M. Gradhand, D. V. Fedorov, P. Zahn, I. Mertig, Y. Otani, Y. Niimi, L. Vila, and A. Fert
    (Siehe online unter https://doi.org/10.1142/S2010324712500105)
  • Shot noise in magnetic tunnel junctions from first principles. Phys. Rev. B 86, 020408(R) (2012)
    K. Liu, K. Xia, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.86.020408)
  • Spin Caloritronics, in Spin Current, edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura (Oxford University Press, 2012), p. 136-148
    G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1093/oso/9780198787075.003.0009)
  • Spin Caloritronics. Nature Mat. 11, 391 (2012)
    G.E.W. Bauer, E. Saitoh, and Bart van Wees
    (Siehe online unter https://doi.org/10.1038/nmat3301)
  • Spin caloritronics: Electron spins blow hot and cold. Nature Nano. 7, 145 (2012)
    S.T.B. Gönnenwein and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1038/nnano.2012.26)
  • Spin Pumping and Spin Transfer, in Spin Current, edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura (Oxford University Press, 2012) p. 87-135
    A. Brataas, Y. Tserkovnyak, G.E.W. Bauer, and P.J. Kelly,
    (Siehe online unter https://doi.org/10.1093/oso/9780198787075.003.0008)
  • Spin pumping with coherent elastic waves. Phys. Rev. Lett. 108, 176601 (2012)
    M. Weiler, H. Huebl, F. S. Goerg, F. D. Czeschka, R. Gross, S.T.B. Goennenwein
    (Siehe online unter https://doi.org/10.1103/physrevlett.108.176601)
  • Spin wave excitation in magnetic insulators by spin-transfer torque. Phys. Rev. Lett., 108, 217204 (2012)
    J. Xiao and G.E.W. Baue
    (Siehe online unter https://doi.org/10.1103/physrevlett.108.217204)
  • Spin-wave propagation and transformation in a thermal gradient. Appl. Phys. Lett. 101, 192406 (2012)
    B. Obry, V. I. Vasyuchka, A. V. Chumak, A.A. Serga, and B. Hillebrands
    (Siehe online unter https://doi.org/10.1063/1.4767137)
  • Surface Acoustic Wave-Driven Ferromagnetic Resonance in Nickel Thin Films: Theory and Experiment. Phys. Rev. B 86, 134415 (2012)
    L. Dreher, M. Weiler, M. Pernpeintner, H. Huebl, R. Gross, M.S. Brandt, S.T.B. Goennenwein
    (Siehe online unter https://doi.org/10.1103/PhysRevB.86.134415)
  • Theory of thermal spin-charge coupling in electronic systems. Phys. Rev. B 85, 085208 (2012)
    B. Scharf, A. Matos-Abiague, I. Zutic, and J. Fabian
    (Siehe online unter https://doi.org/10.1103/PhysRevB.85.085208)
  • Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect. J. Appl. Phys. 111, 103903 (2012)
    K. Uchida, T. Ota, H. Adachi, J. Xiao, T. Nonaka, Y. Kajiwara, G.E.W. Bauer, S. Maekawa, E. Saitoh
    (Siehe online unter https://doi.org/10.1063/1.4716012)
  • Thermodynamics of continuous Media with Electromagnetic Fields. European Physical Journal B Condensed Matter Physics, vol. 85, p. 412 (2012)
    S. Bréchet, F. Reuse and J.-P. Ansermet
    (Siehe online unter https://doi.org/10.1140/epjb/e2012-30719-4)
  • Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls. Nat. Commun. 3, 1100 (2012)
    B. Pfau, S. Schaffert, L. Müller, C. Gutt, A. Al-Shemmary, F. Büttner, R. Delaunay, S. Düsterer, S. Flewett, R. Frömter, J. Geilhufe, E. Guehrs, C.M. Günther, R. Hawaldar, M. Hille, N. Jaouen, A. Kobs, K. Li, J. Mohanty, H. Redlin, W.F. Schlotter, D. Stickler, R. Treusch, B. Vodungbo, M. Kläui, H.P. Oepen, J. Lüning, G. Grübel and S. Eisebitt
    (Siehe online unter https://doi.org/10.1038/ncomms2108)
  • Ab initio studies of the tunneling magneto-Seebeck effect: Influence of magnetic material. Phys. Rev. B 87, 224412 (2013)
    C. Heiliger, C. Franz, and M. Czerner
    (Siehe online unter https://doi.org/10.1103/PhysRevB.87.224412)
  • AC Voltage Generation by Spin Pumping and Inverse Spin Hall Effect. Phys. Rev. Lett. 110, 217602 (2013)
    H. Jiao and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevLett.110.217602)
  • Aharonov-Casher effect in quantum ring ensembles. Phys. Rev. B 88, 115410 (2013)
    F.K. Joibari, Ya. M. Blanter, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.115410)
  • Analysis of the giant spin Hall effect in Cu(Bi) alloys. Phys. Rev. B 88, 085116 (2013)
    D. V. Fedorov, C. Herschbach, A. Johansson, S. Ostanin, I. Mertig, M. Gradhand, K. Chadova, D. Ködderitzsch, and H. Ebert
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.085116)
  • Angular and Linear Momentum of Excited Ferromagnets. Phys. Rev. B 88, 144413 (2013)
    P. Yan, A. Kamra, Y. Cao and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.144413)
  • Anisotropic magnetothermal resistance in Ni nanowires. Phys. Rev. B 87, 094409 (2013)
    J. Kimling, J. Gooth, and K. Nielsch
    (Siehe online unter https://doi.org/10.1103/PhysRevB.87.094409)
  • Current-induced spin wave excitation in Pt|YIG bilayer. Phys. Rev. B 88, 184403 (2013).
    Y. Zhou, H. Jiao, Y. Chen, G.E.W. Bauer, and J. Xiao
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.184403)
  • Dipolar-energy-activated magnetic domain pattern transformation driven by thermal fluctuations. Nat. Commun. 4, 2054 (2013)
    M. Kronseder, M. Buchner, H.G. Bauer, and C.H. Back
    (Siehe online unter https://doi.org/10.1038/ncomms3054)
  • Direct measurement of magnon temperature: new insight into magnon-phonon coupling in magnetic insulators. Phys. Rev. Lett. 111, 107204 (2013)
    M. Agrawal, V.I. Vasyuchka, A.A. Serga, A. D. Karenowska, G. A. Melkov, and B. Hillebrands
    (Siehe online unter https://doi.org/10.1103/PhysRevLett.111.107204)
  • Engineering ultrafast spin currents and terahertz pulses by magnetic heterostructures. Nat. Nano. 8, 256 (2013)
    T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, I. Radu, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, P. M. Oppeneer, and M. Münzenberg
    (Siehe online unter https://doi.org/10.1038/nnano.2013.43)
  • Evidence for a Magnetic Seebeck Effect. Phys. Rev. Lett. 111, 087205 (2013)
    S. D. Brechet, F. A. Vetro, E. Papa, S. E. Barnes and J.-P. Ansermet
    (Siehe online unter https://doi.org/10.1103/physrevlett.111.087205)
  • Exchange magnetic field torques in YIG/Pt bilayers observed by the spin-Hall magnetoresistance. Appl. Phys. Lett. 103, 032401 (2013)
    N. Vlietstra, J. Shan, V. Castel, J. Ben Youssef, G.E.W. Bauer, B. J. van Wees
    (Siehe online unter https://doi.org/10.1063/1.4813760)
  • Experimental test of the spin mixing interface conductivity concept. Phys. Rev. Lett. 111, 176601 (2013)
    M. Weiler, M. Althammer, M. Schreier, J. Lotze, M. Pernpeintner, S. Meyer, H. Huebl, R. Gross, A. Kamra, J. Xiao, Y. Chen, H. Jiao, G.E.W. Bauer, S.T.B. Gönnenwein
    (Siehe online unter https://doi.org/10.1103/physrevlett.111.176601)
  • Extraction Spin Valves for Spintronic Circuits. IEEE Trans. on Magnetics 49 74367 (2013)
    Y. Manzke, R. Farshchi, P. Bruski, J. Herfort, M. Ramsteiner
    (Siehe online unter https://doi.org/10.1109/TMAG.2013.2243712)
  • Field-dependent thermal conductivity and Lorenz number in Co/Cu multilayers. Phys. Rev. B 87, 134406 (2013)
    J. Kimling, K. Nielsch, K. Rott, G. Reiss
    (Siehe online unter https://doi.org/10.1103/PhysRevB.87.134406)
  • Field-dependent thermal conductivity and Lorenz number in Co/Cu multilayers. Phys. Rev. B 87, 134406 (2013)
    J. Kimling, K. Rott, G. Reiss, and K. Nielsch
    (Siehe online unter https://doi.org/10.1103/PhysRevB.87.134406)
  • Field-free synthetic-ferromagnet spin torque oscillator. Phys. Rev. B 87, 020409(R) (2013)
    Y. Zhou, J. Xiao, G.E.W. Bauer, and F.C. Zhang
    (Siehe online unter https://doi.org/10.1103/PhysRevB.87.020409)
  • First-principles linear response description of the spin Nernst effect. Phys. Rev. B 88, 201108 (2013)
    S. Wimmer, D. Ködderitzsch, K. Chadova, and H. Ebert
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.201108)
  • Half-Metallic Ferromagnetism with Unexpectedly Small Spin Splitting in the Heusler Compound Co2FeSi. Phys. Rev. Lett. 110, 066601 (2013)
    D. Bombor, C. G. F. Blum, O. Volkonskiy, S. Rodan, S. Wurmehl, C. Hess, and B. Büchner
    (Siehe online unter https://doi.org/10.1103/physrevlett.110.066601)
  • Heat-induced damping modification in yttrium iron garnet/platinum hetero-structures. Appl. Phys. Lett. 102, 062417 (2013)
    M. B. Jungfleisch, T. An, K. Ando, Y. Kajiwara, K. Uchida, V. I. Vasyuchka, A. V. Chumak, A. A. Serga, E. Saitoh, and B. Hillebrands
    (Siehe online unter https://doi.org/10.1063/1.4792701)
  • Impact of finite temperatures and correlations on the anomalous Hall conductivity from ab initio theory. New J. Phys. 15, 053009 (2013)
    D. Ködderitzsch, K. Chadova, J. Minár and H. Ebert
    (Siehe online unter https://doi.org/10.1088/1367-2630/15/5/053009)
  • Influence of heat flow directions on Nernst effects in Py/Pt bilayers. Phys. Rev. B 88(18), 184425 (2013)
    D. Meier, D. Reinhardt, M. Schmid, C.H. Back, J.-M. Schmalhorst, T. Kuschel, G. Reiss
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.184425)
  • Insight into the skew-scattering mechanism of the spin Hall effect: potential scattering versus spin-orbit scattering. Phys. Rev. B 88, 205102 (2013)
    C. Herschbach, D. V. Fedorov, I. Mertig, M .Gradhand, K. Chadova, H. Ebert and D. Ködderitzsch
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.205102)
  • Large Seebeck magnetic anisotropy in thin Co films embedded in Cu determined by ab initio investigations. Phys. Rev. B 88 104425 (2013)
    V. Popescu and P. Kratzer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.104425)
  • Local Excitation of Magnetostatic Modes in YIG. IEEE Trans. Magn 49, NO. 3, (2013)
    E. Papa , S. E. Barnes , and J.-P. Ansermet
    (Siehe online unter https://dx.doi.org/10.1109/TMAG.2012.2229386)
  • Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires. Appl. Phys. Lett. 103, 092407 (2013)
    T. Böhnert, V. Vega, A. Michel, V. M. Prida and K. Nielsch
    (Siehe online unter https://doi.org/10.1063/1.4819949)
  • Magnon mediated domain wall heat conductance in ferromagnetic wires. IEEE Trans. on Magnetics 49, 3109-3112 (2013)
    P. Yan and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1109/TMAG.2013.2249577)
  • Magnon, phonon and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures. Phys. Rev. B 88, 094410 (2013)
    M. Schreier, A. Kamra, M. Weiler, J. Xiao, G.E.W. Bauer, R. Gross, S.T.B. Goennenwein
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.094410)
  • Manipulation of Ferromagnets via the Spin-Selective Optical Stark Effect. Phys. Rev. B 88, 064416 (2013)
    A. Qaiumzadeh, G.E.W. Bauer, A. Brataas
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.064416)
  • Nonvolatile reconfigurable current divider based on spin extraction in lateral ferromagnet/nonmagnet transport structures. Phys. Rev. B 87, 134415 (2013)
    Y. Manzke, R. Farshchi, P. Bruski, J. Herfort, M. Ramsteiner
    (Siehe online unter https://doi.org/10.1103/PhysRevB.87.134415)
  • Omnidirectional spin-wave nanograting coupler. Nat. Commun. 4, 2702 (2013)
    H. Yu, G. Duerr, R. Huber, M. Bahr, T. Schwarze, F. Brandl, and D. Grundler
    (Siehe online unter https://doi.org/10.1038/ncomms3702)
  • Parameter space for thermal spin-transfer torque. SPIN 3, 1350002 (2013)
    J. C. Leutenantsmeyer, M. Walter, V. Zbarsky, M. Münzenberg, R. Gareev, K. Rott, A. Thomas, G. Reiss, P. Peretzki, H. Schuhmann, M. Seibt, M. Czerner, C. Heiliger
    (Siehe online unter https://doi.org/10.1142/S2010324713500021)
  • Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids, Phys. Rev. B 87, 224401 (2013)
    M. Althammer, S. Meyer, H. Nakayama, M. Schreier, S. Altmannshofer, M. Weiler, H. Hübl, S. Geprägs, M. Opel, R. Gross, D. Meier, C. Klewe, T. Kuschel, J.-M. Schmalhorst, G. Reiss, L. Shen, A. Gupta, Y.-T. Chen, G.E.W. Bauer, E. Saitoh, S.T.B. Gönnenwein
    (Siehe online unter https://doi.org/10.1103/PhysRevB.87.224401)
  • Scattering independent anomalous Nernst effect in ferromagnets, Phys. Rev. B 87, 060406(R) (2013)
    J. Weischenberg, F. Freimuth, S. Blügel, and Y. Mokrousov
    (Siehe online unter https://doi.org/10.1103/PhysRevB.87.060406)
  • Space- and time-resolved Seebeck and Nernst voltages in laser-heated permalloy/gold microstructures. Appl. Phys. Lett. 102, p. 052408 (2013)
    A. von Bieren, F. Brandl, J.-P. Ansermet and D. Grundler
    (Siehe online unter https://doi.org/10.1063/1.4789974)
  • Spin Hall and spin Nernst effect in dilute ternary alloys. Phys. Rev. B 87, 161114(R) (2013)
    K. Tauber, D.V. Fedorov, M. Gradhand, and I. Mertig
    (Siehe online unter https://doi.org/10.1103/PhysRevB.87.161114)
  • Spin Hall Magnetoresistance Induced by a Non-Equilibrium Proximity Effect. Phys. Rev. Lett. 110, 206601 (2013)
    H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G.E.W. Bauer, S.T.B. Gönnenwein, E. Saitoh
    (Siehe online unter https://doi.org/10.1103/physrevlett.110.206601)
  • Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves. Nat. Phys. 9, 636–639 (2013)
    F.K. Dejene, J. Flipse, G.E.W. Bauer, B. J. van Wees
    (Siehe online unter https://doi.org/10.1038/nphys2743)
  • Spin relaxation and the Elliott-Yafet parameter in W(001) ultrathin films: Surface states, anisotropy, and oscillation effects. Phys. Rev. B 87, 224420 (2013)
    N.H. Long, Ph. Mavropoulos, B. Zimmermann, S. Heers, D.S.G. Bauer, S. Blügel, and Y. Mokrousov
    (Siehe online unter https://doi.org/10.1103/PhysRevB.87.224420)
  • Spin torque transistor revisited. Appl. Phys. Lett. 102, 192412 (2013)
    T. Chiba, G.E.W. Bauer, S. Takahashi
    (Siehe online unter https://doi.org/10.1063/1.4806982)
  • Spin Wave Excitation in Magnetic Insulator Thin Films by Spin-Transfer Torque. In M. Wu, A. Hoffmann, editors: Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications Solid State Physics 64, UK: Academic Press (2013), pp. 29-52. ISBN 978-9-12-408130-7
    J. Xiao, Y. Zhou, G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1016/B978-0-12-408130-7.00002-2)
  • Spin-flip hot spots in ultrathin films of monovalent metals: Enhancement and anisotropy of the Elliott-Yafet parameter. Phys. Rev. B 88, 144408 (2013)
    N.H. Long, Ph. Mavropoulos, S. Heers, B. Zimmermann, Y. Mokrousov, and S. Blügel
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.144408)
  • Temperature and Co thickness dependent sign change of the anomalous Hall effect in Co/Pd multilayers: An experimental and theoretical study. Appl. Phys. Lett. 102, 022416 (2013)
    V. Keskin, B. Aktas, J. Schmalhorst, G. Reiss, H. Zhang, J. Weischenberg, and Y. Mokrousov
    (Siehe online unter https://doi.org/10.1063/1.4776737)
  • Terahertz spin current pulses controlled by magnetic heterostructures. Nature Nano. 8, 256 (2013)
    T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S.Mährlein, V. Zbarskyy, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, M. Münzenberg
    (Siehe online unter https://doi.org/10.1038/nnano.2013.43)
  • Theory of spin Hall magnetoresistance. Phys. Rev. B 87, 144411 (2013)
    Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S.T.B. Gönnenwein, E. Saitoh, G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.87.144411)
  • Thermally driven spin and charge currents in thin NiFe2O4/Pt films. Phys. Rev. B 87, 054421 (2013)
    D. Meier, T. Kuschel, L. Shen, A. Gupta, T. Kikkawa, K. Uchida, E. Saitoh, J.-M. Schmalhorst, G. Reiss
    (Siehe online unter https://doi.org/10.1103/PhysRevB.87.054421)
  • Thermally induced dynamics in ultrathin magnetic tunnel junctions. Phys. Rev. B 88, 024406 (2013)
    P. Ogrodnik, G.E.W. Bauer and K. Xia
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.024406)
  • Thermopower switching by magnetic field: First-principles calculations. Phys. Rev. B 88, 081403(R) (2013)
    V.V. Maslyuk, S. Achilles, L. Sandratskii, M. Brandbyge, and I. Mertig
    (Siehe online unter https://doi.org/10.1103/PhysRevB.88.081403)
  • Time-resolved measurement of the tunnel magneto-Seebeck effect in a single magnetic tunnel junction, Rev. Sci. Instrum. 84, 063905 (2013)
    A. Boehnke, M. Walter, N. Roschewsky, T. Eggebrecht, V. Drewello, K. Rott, M. Münzenberg, A. Thomas, G. Reiss
    (Siehe online unter https://doi.org/10.1063/1.4811130)
  • Transverse Spin Seebeck Effect versus Anomalous and Planar Nernst Effects in Permalloy Thin Films. Phys. Rev. Lett. 111, 187201 (2013)
    M. Schmid, S. Srichandan, D. Meier, T. Kuschel, J.-M. Schmalhorst, M. Vogel, G. Reiss, C. Strunk, and C.H. Back
    (Siehe online unter https://doi.org/10.1103/physrevlett.111.187201)
  • Tunnelling magneto thermo currents in CoFeB/MgO/CoFeB magnetic tunnel junction nanopillars. Appl. Phys. Lett. 102, 242413 (2013)
    N. Liebing, S. Serrano-Guisan, P. Krzysteczko, K. Rott, G. Reiss, J. Langer, B. Ocker, and H.W. Schumacher
    (Siehe online unter https://doi.org/10.1063/1.4811737)
  • Unidirectional spin-wave heat conveyer. Nat. Mat. 12, 549 (2013)
    T. An, V.I. Vasyuchka, K. Uchida, A.V. Chumak, K. Yamaguchi, K. Harii, J. Ohe, M.B. Jungfleisch, Y. Kajiwara, H. Adachi, B. Hillebrands, S. Maekawa, and E. Saitoh
    (Siehe online unter https://doi.org/10.1038/nmat3628)
  • Acoustic parametric pumping of spin waves. Solid State Commun. 198, 30–34 (2014)
    H. Keshtgar, M. Zareyan, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1016/j.ssc.2013.12.026)
  • Actuation, propagation, and detection of transverse magnetoelastic waves in ferromagnets. Solid State Commun. 198, 35–39 (2014)
    A. Kamra and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1016/j.ssc.2013.10.007)
  • Anisotropic magnetoresistance of individual CoFeB and Ni nanotubes with values of up to 1.4% at room temperature. APL Materials 2, 076112 (2014)
    D. Rüffer, M. Slot, R. Huber, T. Schwarze, F. Heimbach, G. Tütüncüoglu, F. Matteini, E. Russo- Averchi, A. Kovács, R. Dunin-Borkowski, R.R. Zamani, J.R. Morante, J. Arbiol, A. Fontcuberta i Morral, D. Grundler
    (Siehe online unter https://doi.org/10.1063/1.4891276)
  • Current-induced magnetization dynamics in two magnetic insulators separated by a normal metal. Phys. Rev. B 90, 054401 (2014)
    H. Skarsvåg, G.E.W. Bauer, and A. Brataas
    (Siehe online unter https://doi.org/10.1103/PhysRevB.90.054401)
  • Current-induced spin torque resonance for magnetic insulators. Phys. Rev. Appl. 2, 034003 (2014)
    T. Chiba, G.E.W. Bauer, S. Takahashi
    (Siehe online unter https://doi.org/10.1103/PhysRevApplied.2.034003)
  • Edge states in topological magnon insulators. Phys. Rev. B 90, 024412 (2014)
    A. Mook, J. Henk, and I. Mertig
    (Siehe online unter https://doi.org/10.1103/PhysRevB.90.024412)
  • Electronic, magnetic and transport properties of full and half-metallic thin film Heusler alloys. Phys. Rev. B 89 094410 (2014)
    D. Comtesse, B. Geisler, P. Entel, P. Kratzer and L. Szunyogh
    (Siehe online unter https://doi.org/10.1103/PhysRevB.89.094410)
  • Galvanomagnetic and thermogalvanomagnetic transport effects in ferromagnetic fcc CoxPd1- x alloys from first principles. Phys. Rev. B 89, 161101 (2014)
    S. Wimmer, D. Ködderitzsch and H. Ebert
    (Siehe online unter https://doi.org/10.1103/PhysRevB.89.161101)
  • Giant thermoelectric effects in a proximity-coupled superconductor-ferromagnet device. New J. Phys. 16, 073002 (2014)
    P. Machon, M. Eschrig, W. Belzig
    (Siehe online unter https://doi.org/10.1088/1367-2630/16/7/073002)
  • Interplay of growth mode and thermally induced spin accumulation in epitaxial Al/Co2TiSi/Al and Al/Co2TiGe/Al contacts. Phys. Rev. B 89, 184422 (2014)
    B. Geisler, P. Kratzer and V. Popescu
    (Siehe online unter https://doi.org/10.1103/PhysRevB.89.184422)
  • Intrinsic magnetoresistance in metal films on ferromagnetic insulators. Phys. Rev. B 90, 161412(R) (2014)
    V.L. Grigoryan, W. Guo, G.E.W. Bauer, J. Xiao
    (Siehe online unter https://doi.org/10.1103/PhysRevB.90.161412)
  • Inverse spin Hall effect in Ni81Fe19/normal-metal bilayers. Phys. Rev. B 89, 060407 (2014)
    M. Obstbaum, M. Haertinger, H.G. Bauer, T. Meier, F. Swientek, C.H. Back, G. Woltersdorf
    (Siehe online unter https://doi.org/10.1103/PhysRevB.89.060407)
  • Investigation of the magnetic properties of insulating thin films using the longitudinal spin Seebeck effect. J. Appl. Phys. 115, 17, 17C731
    A. Kehlberger, G. Jakob, M. C. Onbasli et al.
    (Siehe online unter https://doi.org/10.1063/1.4864252)
  • Light-induced spin polarizations in quantum rings. Phys. Rev. B 90, 155301 (2014)
    F.K. Joibari, Ya.M. Blanter, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.90.155301)
  • Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics. Sci. Rep. 4, 6848 (2014)
    H. Yu, O. d'Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, R. Huber, I. Stasinopoulos, D. Grundler
    (Siehe online unter https://doi.org/10.1038/srep06848)
  • Magneto-thermoelectric figure of merit of Co/Cu multilayers. Appl. Phys. Lett. 104, 092411 (2014)
    X.K. Hu, P. Krzysteczko, N. Liebing, S. Serrano-Guisan, K. Rott, G. Reiss, J. Kimling, T. Böhnert, K. Nielsch, and H.W. Schumacher
    (Siehe online unter https://doi.org/10.1063/1.4867700)
  • Magnon Hall effect and topology in kagome lattices: A theoretical investigation. Phys. Rev. B 89, 134409 (2014)
    A. Mook, J. Henk, and I. Mertig
    (Siehe online unter https://doi.org/10.1103/PhysRevB.89.134409)
  • Observation of the spin Peltier effect. Phys. Rev. Lett. 113, 027601 (2014)
    J. Flipse, F.K. Dejene, D. Wagenaar, G.E.W. Bauer, J. Ben Youssef, B.J. van Wees
    (Siehe online unter https://doi.org/10.1103/physrevlett.113.027601)
  • Physical characteristics and cation distribution of NiFe2O4 thin films prepared by reactive cosputtering. J. Appl. Phys. 115, 123903 (2014)
    C. Klewe, M. Meinert, A. Boehnke, K. Kuepper, E. Arenholz, A. Gupta, J.-M. Schmalhorst, T. Kuschel and G. Reiss
    (Siehe online unter https://doi.org/10.1063/1.4869400)
  • Propagation of thermally induced magnonic spin currents. Phys. Rev. B 89, 024409 (2014)
    U. Ritzmann, D. Hinzke and U. Nowak
    (Siehe online unter https://doi.org/10.1103/PhysRevB.89.024409)
  • Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization. Appl. Mat. 2, 106102 (2014)
    M.C. Onbasli, A. Kehlberger, D.H. Kim et al.
    (Siehe online unter https://doi.org/10.1063/1.4896936)
  • Role of Entropy in Domain Wall Motion in Thermal Gradients. Phys. Rev. Lett. 113, 097201 (2014)
    F. Schlickeiser, U. Ritzmann, D. Hinzke and U. Nowak
    (Siehe online unter https://doi.org/10.1103/physrevlett.113.097201)
  • Skew scattering in dilute ferromagnetic alloys. Phys. Rev. B 90, 220403(R) (2014)
    B. Zimmermann, K. Chadova, D. Ködderitzsch, S. Blügel, H. Ebert, D. V. Fedorov, N. H. Long, Ph. Mavropoulos, I. Mertig, Y. Mokrousov, and M. Gradhand
    (Siehe online unter https://doi.org/10.1103/PhysRevB.90.220403)
  • Spin Hall noise. Phys. Rev. B 90, 214419 (2014)
    A. Kamra, F. P. Witek, S. Meyer, H. Huebl, S. Geprägs, R. Gross, G.E.W. Bauer, and S.T.B. Goennenwein
    (Siehe online unter https://doi.org/10.1103/PhysRevB.90.214419)
  • Spin Hall voltages from a.c. and d.c. spin currents. Nat. Commun. 5, 3768 (2014)
    Dahai Wei, M. Obstbaum, M. Ribow, C.H. Back, G. Woltersdorf
    (Siehe online unter https://doi.org/10.1038/ncomms4768)
  • Spin mechanics. Solid State Commun. 198, 1-2 (2014)
    S.T.B. Gönnenwein, S. Maekawa, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1016/j.ssc.2014.07.021)
  • Spin relaxation and spin Hall transport in 5d transition-metal ultrathin films. Phys. Rev. B 90, 064406 (2014)
    N. H. Long, Ph. Mavropoulos, B. Zimmermann, D. S. G. Bauer, S. Blügel, and Y. Mokrousov
    (Siehe online unter https://doi.org/10.1103/PhysRevB.90.064406)
  • Spin Seebeck Power Generators. Appl. Phys. Lett. 104, 042402 (2014)
    A. B. Cahaya, O. A. Tretiakov, G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1063/1.4863084)
  • Spin-caloric transport properties of cobalt nanostructures: Spin disorder effects from first principles. Phys. Rev. B 89, 134417 (2014)
    R. Kovácik, P. Mavropoulos, D. Wortmann, and S. Blügel
    (Siehe online unter https://doi.org/10.1103/PhysRevB.89.134417)
  • Temperature and Bias-Voltage Dependence of Atomic-Layer-Deposited HfO2-Based Magnetic Tunnel Junctions. Appl. Phys. Lett. 105, 132405 (2014)
    S. Fabretti, R. Zierold, K. Nielsch, C. Voigt, C. Ronning, P. Peretzki, M. Seibt, A. Thomas
    (Siehe online unter https://doi.org/10.1063/1.4896994)
  • The 2014 Magnetism Roadmap. J. Phys. D 47, 333001 (2014)
    R. L. Stamps, S. Breitkreutz, J. Åkerman, A. Chumak., Y. Otani, G.E.W. Bauer, J.-U. Thiele, M. Bowen, S.A. Majetich, M. Kläui, I.L. Prejbeanu, B. Dieny, N.M. Dempsey, and B. Hillebrands
    (Siehe online unter https://doi.org/10.1088/0022-3727/47/33/333001)
  • Thermoelectricity and disorder of FeCo/MgO/FeCo magnetic tunnel junctions. Phys. Rev. B 90, 224406 (2014)
    S. Wang, K. Xia and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.90.224406)
  • A scenario for magnonic spin-wave traps. Sci. Rep. 5, 12824 (2015)
    F. Busse, M. Mansurova, B. Lenk, M. von der Ehe and M. Münzenberg
    (Siehe online unter https://doi.org/10.1038/srep12824)
  • Coherent elastic excitation of spin waves. Phys. Rev. B 91, 104409 (2015)
    A. Kamra, H. Keshtgar, P. Yan, G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.91.104409)
  • Comparison of the magneto-Peltier and magneto-Seebeck effects in magnetic tunnel junctions. Phys. Rev. B 92, 020414(R) (2015)
    J. Shan, F. K. Dejene, J. C. Leutenantsmeyer, J. Flipse, M. Münzenberg and B. J. van Wees
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.020414)
  • Controlling the Magnetic Structure of Co/Pd Thin Films by Direct Laser Interference Patterning. Nanotechnology 26, 205302 (2015)
    M. Stärk, F. Schlickeiser, D. Nissen et al.
    (Siehe online unter https://doi.org/10.1088/0957-4484/26/20/205302)
  • Current-induced spin torque resonance of a magnetic insulator. Phys. Rev. B 92, 144411 (2015)
    M. Schreier, T. Chiba, A. Niedermayr, J. Lotze, H. Huebl, St. Geprägs, S. Takahashi, G.E.W. Bauer, R. Gross, S.T.B. Goennenwein
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.144411)
  • Current-induced spin torque resonance of magnetic insulators affected by field-like spin-orbit torques and out-of-plane magnetizations. J. Appl. Phys. 117, 17C715 (2015)
    T. Chiba, M. Schreier, G.E.W. Bauer, S. Takahashi
    (Siehe online unter https://doi.org/10.1063/1.4913632)
  • Dependence of transverse magneto-thermoelectric effects on inhomogeneous magnetic fields. Phys. Rev. B 92, 224425 (2015)
    A. S. Shestakov, M. Schmid, D. Meier, T. Kuschel, C.H. Back
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.224425)
  • Domain wall magneto-Seebeck effect. Phys. Rev. B 92, 140405 (2015)
    P. Krzysteczko, X. Hu, N. Liebing, S. Sievers and H. W. Schumacher
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.140405)
  • Dzyaloshinskii-Moriya interaction and Hall effects in the skyrmion phase of Mn1−xFexGe alloys. Phys. Rev. Lett. 115, 036602 (2015)
    J. Gayles, F. Freimuth, T. Schena, G. Lani, P. Mavropoulos, R. Duine, S. Blügel, J. Sinova, Y. Mokrousov
    (Siehe online unter https://doi.org/10.1103/physrevlett.115.036602)
  • Enhanced Magneto-optic Kerr Effect and Magnetic Properties of CeY2Fe5O12 Epitaxial Thin Films. Phys. Rev. Applied 4, 014008 (2015)
    A. Kehlberger, K. Richter, M.C. Onbasli, G. Jakob, D.H. Kim, T. Goto, C.A. Ross, G. Götz, G. Reiss, T. Kuschel, M. Kläui
    (Siehe online unter https://doi.org/10.1103/PhysRevApplied.4.014008)
  • Exchange Magnon-polaritons in Microwave Cavities. Phys. Rev. B 91, 094423 (2015)
    Y. Cao, P. Yan, H. Huebl, S.T.B. Goennenwein, G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.91.094423)
  • General Boundary Conditions for Quasiclassical Theory of Superconductivity in the Diffusive Limit: Application to Strongly Spin-polarized Systems. New J. Phys. 17, 083037 (2015)
    M. Eschrig, A. Cottet, W. Belzig, and J. Linder
    (Siehe online unter https://doi.org/10.1088/1367-2630/17/8/083037)
  • Half-Heusler superlattices as model systems for nanostructured thermoelectrics. Physica Status Solidi A 1-7 (2015)
    P. Komar, T. Jäger, Ch. Euler et al.
    (Siehe online unter https://doi.org/10.1002/pssa.201532445)
  • Large morphological sensitivity of the magneto-thermopower in Co/Cu multilayered system. New J. Phys. 17, 033036 (2015)
    V. Popescu, P. Kratzer
    (Siehe online unter https://doi.org/10.1088/1367-2630/17/3/033036)
  • Laser-induced spatiotemporal dynamics of magnetic films. Phys. Rev. Lett. 115, 197201 (2015)
    K. Shen and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/physrevlett.115.197201)
  • Length Scale of the Spin Seebeck Effect. Phys. Rev. Lett. 115, 096602 (2015)
    A. Kehlberger, U. Ritzmann, D. Hinzke, Er-Jia Guo, J. Cramer, G. Jakob, M. C. Onbasli, Dong Hun Kim, C. A. Ross, M. B. Jungfleisch, B. Hillebrands, U. Nowak, M. Kläui
    (Siehe online unter https://doi.org/10.1103/PhysRevLett.115.096602)
  • Longitudinal spin Seebeck effect contribution in transverse spin Seebeck effect experiments in Pt/YIG and Pt/NFO. Nat. Commun. 6, 8211 (2015)
    D. Meier, D. Reinhardt, M. van Straaten, C. Klewe, M. Althammer, M. Schreier, S.T.B. Goennenwein, A. Gupta, M. Schmid, C.H. Back, J.-M. Schmalhorst, T. Kuschel, G. Reiss
    (Siehe online unter https://doi.org/10.1038/ncomms9211)
  • Magnetic configurations in nanostructured Co2MnGa thin film elements. New J. Phys. 17, 083030 (2015)
    S. Finizio, A. Kronenberg, M. Vafaee et al.
    (Siehe online unter https://doi.org/10.1088/1367-2630/17/8/083030)
  • Magnetic field control of the spin Seebeck effect. Phys. Rev. B 92, 174411 (2015)
    U. Ritzmann, D. Hinzke, A. Kehlberger, Er-Jia Guo, M. Kläui, U. Nowak
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.174411)
  • Magnetic field dependent thermal conductance in La0.67Ca0.33MnO3. J. Magn. Magn. Mat. 381,188 (2015)
    C. Euler, P. Holuj, A. Talkenberger et al.
    (Siehe online unter https://doi.org/10.1016/j.jmmm.2014.12.083)
  • Magnetic spheres in microwave cavities. Phys. Rev. B 91, 214430 (2015)
    B.Z. Rameshti, Y. Cao, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.91.214430)
  • Magnetization reversal of an individual exchange-biased permalloy nanotube. Phys. Rev. B 92, 214432 (2015)
    A. Buchter, R. Wölbing, M. Wyss, O. F. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, D. Rüffer, F. Matteini, G. Tütüncüoglu, F. Heimbach, A. Kleibert, A. Fontcuberta i Morral, D. Grundler, R. Kleiner, D. Koelle, and M. Poggio
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.214432)
  • Magnon waveguide with nanoscale confinement constructed from topological magnon insulators. Phys. Rev. B 91, 174409 (2015)
    A. Mook, J. Henk, and I. Mertig
    (Siehe online unter https://doi.org/10.1103/PhysRevB.91.174409)
  • Noise spectroscopy of CoFeB/MgO/CoFeB magnetic tunnel junctions in the presence of thermal gradients. J. Magn. Magn. Mat. (2015), 400, 154
    N. Liebing, S.Serrano-Guisan, K.Rott, G.Reiss, H.W.Schumacher
    (Siehe online unter https://doi.org/10.1016/j.jmmm.2015.08.090)
  • On/off switching of bit readout in bias-enhanced tunnel magneto-Seebeck effect. Scientific Reports 5, 8945 (2015)
    A. Boehnke, K. Rott, A. Thomas, G. Reiss, C. Franz, M. Czerner, C. Heiliger, M. Milnikel, M. Walter, V. Zbarsky, M. Münzenberg
    (Siehe online unter https://doi.org/10.1038/srep08945)
  • Reduced thermal conductivity of TiNiSn/HfNiSn superlattices. Phys. Rev. B 92, 125436 (2015)
    P. Holuj, Ch. Euler, B. Balke et al.
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.125436)
  • Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet|platinum bilayers. J. Phys. D: Appl. Phys. 48, 025001 (2015)
    M. Schreier, G.E.W. Bauer, V. Vasyuchka, J. Flipse, K. Uchida, J. Lotze, V. Lauer, A. Chumak, A. Serga, S. Daimon, T. Kikkawa, E. Saitoh, B. J. van Wees, B. Hillebrands, R. Gross, S.T.B. Gönnenwein
    (Siehe online unter https://doi.org/10.1088/0022-3727/48/2/025001)
  • Size dependence of Peltier cooling in ferromagnet/Au nanopillars. Appl. Phys. Express 8, 083002 (2015)
    S. Bosu, Y. Sakuraba, T. Kubota, I. Juarez-Acosta, T. Sugiyama, K. Saito, M.A. Olivares-Robles, S. Takahashi, G.E.W. Bauer, and K. Takanashi
    (Siehe online unter https://doi.org/10.7567/APEX.8.083002)
  • Spin currents injected electrically and thermally from highly spin polarized Co2MnSi. App. Phys. Lett. 107, 082401 (2015)
    A. Pfeiffer, A., S. Hu, R.M. Reeve et al.
    (Siehe online unter https://doi.org/10.1063/1.4929423)
  • Spin Hall effect. Rev. Mod. Phys. 87, 1213 (2015)
    J. Sinova, S. Valenzuela, J. Wunderlich, C. H. Back, T. Jungwirth
    (Siehe online unter https://doi.org/10.1103/RevModPhys.87.1213)
  • Spin orbitronics: Charges ride the spin wave. Nat. Nano. 10(1), 22 (2015)
    T. Kuschel and G. Reiss
    (Siehe online unter https://doi.org/10.1038/nnano.2014.279)
  • Spin pumping in YIG/Pt bilayers as a function of layer thickness. Phys. Rev. B 92, 054437 (2015)
    M. Haertinger, C. H. Back, J. Lotze, M. Weiler, S. Geprägs, H. Huebl, S.T.B. Goennenwein, G. Woltersdorf
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.054437)
  • Spin Seebeck Power Conversion. IEEE Trans. Magn. 51, 0800414 (2015)
    A.B. Cahaya, O.A. Tretiakov, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1109/TMAG.2015.2436362)
  • Spin-Hall magnetoresistance and spin Seebeck effect in spin-spiral and paramagnetic phases of multiferroic CoCr2O4 films. Phys. Rev. B 92, 224410 (2015)
    A. Aqeel, N. Vlietstra, J.A. Heuver, G.E.W. Bauer, B. Noheda, B.J. van Wees, and Th. T. M. Palstra
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.224410)
  • Spin-Transfer Torque Switching at Ultra Low Current Densities. Mat. Trans. 56, 1323 (2015)
    J.C. Leutenantsmeyer, V. Zbarsky, M. von der Ehe, S. Wittrock, P. Peretzki, H. Schuhmann, A. Thomas, K. Rott, G. Reiss, T.H. Kim, M. Seibt, M. Muenzenberg
    (Siehe online unter https://doi.org/10.2320/matertrans.MA201570)
  • Spin-wave localization in disordered magnets. Phys. Rev. B 92, 014411 (2015)
    M. Evers, C. A. Müller, U. Nowak
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.014411)
  • Spincaloric Transport in Epitaxial Co2MnSi/MgO/ Co2MnSi magnetic tunnel junctions. Phys. Rev. B 92, 144418 (2015)
    B. Geisler und P. Kratzer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.144418)
  • Static Magnetic Proximity Effect in Pt/NiFe2O4 and Pt/Fe Bilayers Investigated by X-Ray Resonant Magnetic Reflectivity. Phys. Rev. Lett. 115, 097401 (2015)
    T. Kuschel, C. Klewe, J.-M. Schmalhorst, F. Bertram, O. Kuschel, T. Schemme, J. Wollschläger, S. Francoual, J. Strempfer, A. Gupta, M. Meinert, G. Götz, D. Meier and G. Reiss
    (Siehe online unter https://doi.org/10.1103/physrevlett.115.097401)
  • Thermal conductance of thin film YIG determined using Bayesian statistics. Phys. Rev. B 92, 094406 (2015)
    C. Euler, P. Hołuj, T. Langner, A. Kehlberger, V.I. Vasyuchka, M. Kläui, G. Jakob
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.094406)
  • Thickness and power dependence of the spin-pumping effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect. Phys. Rev. B 91, 134407 (2015)
    M.B. Jungfleisch, A.V. Chumak, A. Kehlberger et al.
    (Siehe online unter https://doi.org/10.1103/PhysRevB.91.134407)
  • Topologically nontrivial magnons at an interface of two kagome ferromagnets. Phys. Rev. B 91, 224411 (2015)
    A. Mook, J. Henk, and I. Mertig
    (Siehe online unter https://doi.org/10.1103/PhysRevB.91.224411)
  • Approaching soft X-ray wavelengths in nanomagnet-based microwave technology. Nat. Commun. 7, 11255 (2016)
    H. Yu, O. D’Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, F. Heimbach, D. Grundler, and J.P. Ansermet
    (Siehe online unter https://doi.org/10.1038/ncomms11255)
  • Approaching soft X-ray wavelengths in nanomagnet-based microwave technology. Nat. Commun. 7, 11255 (2016)
    H. Yu, O. d’ Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, F. Heimbach, D. Grundler
    (Siehe online unter https://doi.org/10.1038/ncomms11255)
  • Comparison of laser induced and intrinsic tunnel magneto-Seebeck effect in CoFeB/MgAl2O4 and CoFeB/MgO magnetic tunnel junctions. Phys. Rev. B 93, 224433 (2016)
    T. Huebner, A. Boehnke, U. Martens, A. Thomas, J.-M. Schmalhorst, G. Reiss, M. Münzenberg, T. Kuschel
    (Siehe online unter https://doi.org/10.1103/PhysRevB.93.224433)
  • Detection of DC currents and resistance measurements in longitudinal spin Seebeck effect experiments on Pt/YIG and Pt/NFO. AIP Advances 6, 056302 (2016)
    D. Meier, T. Kuschel, S. Meyer, S.T.B. Goennenwein, L. Shen, A. Gupta, J.-M. Schmalhorst, G. Reiss
    (Siehe online unter https://doi.org/10.1063/1.4942796)
  • Effective exchange fields in spin-torque resonance of magnetic insulators, J. Mag. Mag. Mater. 400, 163-167 (2016)
    T. Chiba, G.E.W. Bauer, and S. Takahashi
    (Siehe online unter https://doi.org/10.1016/j.jmmm.2015.07.058)
  • Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics 10, 483–488 (2016)
    T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P.M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L.M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, T. Kampfrath
    (Siehe online unter https://doi.org/10.1038/nphoton.2016.91)
  • Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics, Vol. 10, Issue 7, (2016), pp. 483-488
    T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath
    (Siehe online unter https://doi.org/10.1038/nphoton.2016.91)
  • Fermi surfaces, spin-mixing parameter, and colossal anisotropy of spin relaxation in tran- sition metals from ab initio theory. Phys. Rev. B 93, 144403 (2016)
    B. Zimmermann, Ph. Mavropoulos, N.H. Long, Ch. Gerhorst, S. Blügel, and Y. Mokrousov
    (Siehe online unter https://doi.org/10.1103/PhysRevB.93.144403)
  • From NiO/Fe3O4 bilayers to NiFe2O4-like thin films through Ni interdiffusion. Phys. Rev. B 94, 094423 (2016)
    O. Kuschel, R. Buß, W. Spiess, T. Schemme, J. Wöllermann, K. Balinski, A. T. N'Diaye, T. Kuschel, J. Wollschläger, K. Kuepper
    (Siehe online unter https://doi.org/10.1103/PhysRevB.94.094423)
  • Fundamentals and applications of the Lan-dau-Lifshitz-Bloch equation. J. Phys. D: Appl. Phys. 50, 033003 (2016)
    Atxitia, U., D. Hinzke, and U. Nowak
    (Siehe online unter https://doi.org/10.1088/1361-6463/50/3/033003)
  • Giant spin Nernst effect induced by resonant scattering at surfaces of metallic films. Phys. Rev. B 93, 180406(R) (2016)
    N.H. Long, Ph. Mavropoulos, B. Zimmermann, S. Blügel and Y. Mokrousov
    (Siehe online unter https://doi.org/10.1103/PhysRevB.93.180406)
  • Half-Heusler superlattices as model systems for nanostructured thermoelectrics. Physica Status Solidi A-Applications and Materials Science 213, 732 (2016)
    P. Komar, T. Jäger, Ch. Euler et al.
    (Siehe online unter https://doi.org/10.1002/pssa.201532445)
  • Inertia-Free Thermally Driven Domain-Wall Motion in Antiferromagnets. Phys. Rev. Lett., 117(10), 107201 (2016)
    S. Selzer, U. Atxitia, U. Ritzmann, D. Hinzke, and U. Nowak
    (Siehe online unter https://doi.org/10.1103/physrevlett.117.107201)
  • Influence of complex disorder on skew-scattering Hall effects in L10-ordered FePt alloy. Phys. Rev. B 94, 060406(R) (2016)
    B. Zimmermann, N.H. Long, Ph. Mavropoulos, S. Blügel, and Y. Mokrousov
    (Siehe online unter https://doi.org/10.1103/PhysRevB.94.060406)
  • Influence of thickness and interface on the low-temperature enhancement of the Spin Seebeck Effect in YIG films. Phys. Rev. X 6, 031012 (2016)
    E.J. Guo, J. Cramer, A. Kehlberger et al.
    (Siehe online unter https://doi.org/10.1103/PhysRevX.6.031012)
  • Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons. Phys. Rev. B 94, 174437 (2016)
    J. Shan, L.J. Cornelissen, N. Vlietstra, J. Ben Youssef, T. Kuschel, R. A. Duine, B. J. van Wees
    (Siehe online unter https://doi.org/10.1103/PhysRevB.94.174437)
  • Magnetic field control of the spin Seebeck effect. Phys. Rev. B 93, 019902 (2016)
    U. Ritzmann, D. Hinzke, A. Kehlberger et al.
    (Siehe online unter https://doi.org/10.1103/PhysRevB.93.019902)
  • Magnetic skyrmions: from fundamental to applications. J. Phys. D: Appl. Phys. 49, 423001 (2016)
    G. Finocchio, F. Büttner, R. Tomasello et al.
    (Siehe online unter https://doi.org/10.1088/0022-3727/49/42/423001)
  • Magnetization reversal in individual Py and CoFeB nanotubes locally probed via anisotropic magnetoresistance and anomalous Nernst effect. Appl. Phys. Lett. 108, 132408 (2016)
    K. Baumgaertl, F. Heimbach, S. Maendl, D. Rueffer, A. Fontcuberta i Morral and D. Grundler
    (Siehe online unter https://doi.org/10.1063/1.4945331)
  • Magnon spin transport driven by the magnon chemical potential in a magnetic insulator. Phys. Rev. B 94. 014412 (1-16) (2016)
    L.J. Cornelissen, K.J.H. Peters, G.E.W. Bauer, R.A. Duine, and B.J. van Wees
    (Siehe online unter https://doi.org/10.1103/PhysRevB.94.014412)
  • Magnon-mediated spin current noise in ferromagnet|non-magnetic conductor hybrids. Phys. Rev. B 94, 014419 (2016)
    A. Kamra, W. Belzig
    (Siehe online unter https://doi.org/10.1103/PhysRevB.94.014419)
  • Magnon-Polarons in the Spin Seebeck Effect. Phys. Rev. Lett. 117, 207203 (1-5) (2016)
    T. Kikkawa, K. Shen, B. Flebus, R. A. Duine, K. Uchida, Z. Qiu, G.E.W. Bauer, and E. Saitoh
    (Siehe online unter https://doi.org/10.1103/physrevlett.117.207203)
  • Microscopic calculation of thermally-induced spin-transfer torques. Phys. Rev. B 94, 104417 (1-12) (2016)
    H. Kohno, Y. Hiraoka, M. Hatami, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.94.104417)
  • Modelling of the Peltier effect in magnetic multilayers, J. Appl. Phys. 119, 073906 (2016)
    I. Juarez-Acosta, M.A. Olivares-Robles, S. Bosu, Y. Sakuraba, T. Kubota, S. Takahashi, K. Takanashi, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1063/1.4942163)
  • Noise spectroscopy of CoFeB/MgO/CoFeB magnetic tunnel junctions in the presence of thermal gradients. J. Magn. Magn. Mat. 400, 154 (2016)
    N. Liebing , S. Serrano-Guisan, K. Rott, G. Reiss, H.W. Schumacher
    (Siehe online unter https://doi.org/10.1016/j.jmmm.2015.08.090)
  • Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions. Beilstein J. Nanotechnol. 7, 1579 (2016)
    S. Kolenda, P. Machon, D. Beckmann, W. Belzig
    (Siehe online unter https://doi.org/10.3762/bjnano.7.152)
  • Observation of temperature-gradient induced magnetization. Nat. Commun. 7, 12265 (2016)
    D. Hou, Z. Qiu, R. Iguchi, K. Sato, E. K. Vehstedt, K. Uchida, G.E.W. Bauer, and E. Saitoh
    (Siehe online unter https://doi.org/10.1038/ncomms12265)
  • Origin of the spin Seebeck effect in compensated ferrimagnets. Nat. Commun. 7, 10452 (2016)
    S. Geprägs, A. Kehlberger, F. Della Coletta, Z. Qiu, E.-J. Guo, T. Schulz, C. Mix, S. Meyer, A. Kamra, M. Althammer, H. Huebl, G. Jakob, Y. Ohnuma, H. Adachi, J. Barker, S. Maekawa, G.E.W. Bauer, E. Saitoh, R. Gross, S.T.B. Goennenwein, and M. Kläui
    (Siehe online unter https://doi.org/10.1038/ncomms10452)
  • Origin of the spin Seebeck effect in compensated ferrimagnets. Nat. Commun. 7, 10452 (2016)
    S. Geprägs, A. Kehlberger, F. Della Coletta et al.
    (Siehe online unter https://doi.org/10.1038/ncomms10452)
  • Perspective: Ultrafast magnetism and THz spintronics. J. Appl. Phys. 120, 140901 (2016)
    J. Walowski and M. Münzenberg
    (Siehe online unter https://doi.org/10.1063/1.4958846)
  • Reconfigurable heat-induced spin wave lenses, Appl. Phys. Lett., 109(23), 232407. (2016)
    O. Dzyapko, I.V. Borisenko, V.E. Demidov, W. Pernice, and S.O. Demokritov
    (Siehe online unter https://doi.org/10.1063/1.4971829)
  • Spin dynamics simulations of topological magnon insulators: From transverse current correlation functions to the family of magnon Hall effects. Phys. Rev. B 94, 174444 (2016)
    A. Mook, J. Henk, and I. Mertig
    (Siehe online unter https://doi.org/10.1103/PhysRevB.94.174444)
  • Spin Hall Magnetoresistance in a Canted Ferrimagnet. Phys. Rev. B 94, 094401 (1-6) (2016)
    K. Ganzhorn, J. Barker, R. Schlitz, M. Althammer, S. Geprägs, H. Huebl, Benjamin A. Piot, R. Gross, G.E.W. Bauer and S.T.B. Gönnenwein
    (Siehe online unter https://doi.org/10.1103/PhysRevB.94.094401)
  • Spin pumping into two-dimensional electron systems. Phys. Rev. B 94, 205428 (1-7) (2016)
    T. Inoue, G.E.W. Bauer, K. Nomura
    (Siehe online unter https://doi.org/10.1103/PhysRevB.94.205428)
  • Spin Seebeck effect at microwave frequencies. Phys. Rev. B 93, 224430 (2016)
    M. Schreier, F. Kramer, H. Huebl, S. Geprägs, R. Gross, S.T.B. Goennenwein, T. Noack, T. Langner, A.A. Serga, B. Hillebrands, V. I. Vasyuchka
    (Siehe online unter https://doi.org/10.1103/PhysRevB.93.224430)
  • Spin-orbit torques and spin accumulation in FePt/Pt and Co/Cu thin films from first principles: the role of impurities. Phys. Rev. B 93, 224420 (2016) 

    G. Géranton, B. Zimmermann, N.H. Long, Ph. Mavropoulos, S. Blügel, F. Freimuth and Y. Mokrousov
    (Siehe online unter https://doi.org/10.1103/PhysRevB.93.224420)
  • Static magnetic proximity effect in Pt layers on sputter-deposited NiFe2O4 and on Fe of various thicknesses investigated by XRMR. IEEE Trans. Magn. 52, 4500104 (2016)
    T. Kuschel, C. Klewe, P. Bougiatioti, O. Kuschel, J. Wollschläger, L. Bouchenoire, S.D. Brown, J.- M. Schmalhorst, D. Meier, G. Reiss
    (Siehe online unter https://doi.org/10.1109/TMAG.2015.2512040)
  • Static magnetic proximity effect in Pt/Ni1-xFex bilayers investigated by x-ray resonant magnetic reflectivity. Phys. Rev. B 93, 214440 (2016)
    C. Klewe, T. Kuschel, J.-M. Schmalhorst, F. Bertram, O. Kuschel, J. Wollschläger, J. Strempfer, M. Meinert, G. Reiss
    (Siehe online unter https://doi.org/10.1103/PhysRevB.93.214440)
  • Strong spin-orbit fields and Dyakonov-Perel spin dephasing in supported metallic films. Phys. Rev. B 94, 180406(R) (2016)
    N.H. Long, Ph. Mavropoulos, D.S.G. Bauer, B. Zimmermann, Y. Mokrousov and S. Blügel
    (Siehe online unter https://doi.org/10.1103/PhysRevB.94.180406)
  • Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport. Phys. Rev. Lett. 116, 146601 (2016)
    A. Kamra and W. Belzig
    (Siehe online unter https://doi.org/10.1103/physrevlett.116.146601)
  • Tailoring of the electrical and thermal properties using ultra-short period non-symmetric superlattices. Appl. Mat. 4, 104902 (2016)
    P. Komar, E. Chávez-Ángel, Ch. Euler et al.
    (Siehe online unter https://doi.org/10.1063/1.4954499)
  • Thermal generation of spin current in epitaxial CoFe2O4 films. Appl Phys. Lett. 108, 022403 (2016)
    E.J. Guo, A. Kehlberger, J. Cramer et al.
    (Siehe online unter https://doi.org/10.1063/1.4939625)
  • Thermal Spin Dynamics of Yttrium Iron Garnet. Phys. Rev. Lett. 117, 217201 (1-5) (2016)
    J. Barker and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/physrevlett.117.217201)
  • Topical Review: Theory of spin Hall magnetoresistance (SMR) and related phenomena. J. Phys.: Condens. Matter 28, 103004 (2016)
    Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S.T.B. Gönnenwein, E. Saitoh, G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1088/0953-8984/28/10/103004)
  • Topological magnon insulators: Chern numbers and surface magnons. Proc. SPIE 9931, 993134 (2016)
    A. Mook, J. Henk, and I. Mertig
    (Siehe online unter https://doi.org/10.1117/12.2235847)
  • Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores. Phys. Rev. Lett. 117, 157204 (2016)
    A. Mook, J. Henk, and I. Mertig
    (Siehe online unter https://doi.org/10.1103/physrevlett.117.157204)
  • Bolometric detection of ferromagnetic resonance in YIG slab. J. Magn. Magn. Mat. 439 (2017) 53–56
    S. Tu, M. Białek, Y. Zhang, W. Zhao, H. Yu, J.-P. Ansermet
    (Siehe online unter https://doi.org/10.1016/j.jmmm.2017.04.068)
  • Characterizing spin transport: detection of spin accumulation via magnetic stray field
    M. Pernpeintner, A. Kamra, S.T.B. Goennenwein, H. Huebl
    (Siehe online unter https://doi.org/10.48550/arXiv.1709.01820)
  • Chemical potential of quasi-equilibrium magnon gas driven by pure spin current. Nature Comm. 8 (2017) 1579
    V.E. Demidov, S. Urazhdin, B. Divinskiy, V.D. Bessonov, A.B. Rinkevich, V.V. Ustinov, and S.O. Demokritov
    (Siehe online unter https://doi.org/10.1038/s41467-017-01937-y)
  • Chiral charge pumping in graphene deposited on a magnetic insulator. Phys. Rev. B, 95(2), 024408. (2017)
    M. Evelt, H. Ochoa, O. Dzyapko, V.E. Demidov, A. Yurgens, J. Sun, Y. Tserkovnyak, V. Bessonov, A.B. Rinkevich, S.O. Demokritov
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.024408)
  • Complex THz and DC inverse spin Hall effect in YIG/Cu1−xIrx bilayers across a wide concentration range
    J. Cramer, T. Seifert, A. Kronenberg, F. Fuhrmann, G. Jakob, M. Jourdan, T. Kampfrath, and M. Kläui
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.7b04538)
  • Crystal field effects on spin pumping. Phys. Rev. B 96, 144434 (1-10) (2017)
    A.B. Cahaya, A.O. Leon, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.96.144434)
  • Damping of parametrically excited magnons in the presence of the longitudinal spin Seebeck effect. Phys. Rev. B 95, 134441 (2017)
    T. Langner, A. Kirihara, A.A. Serga, B.Hillebrands, and V.I. Vasyuchka
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.134441)
  • Electrical transport and optical band gap of NiFe2Ox thin films, J. Appl. Phys. 122, 225101 (2017)
    P. Bougiatioti, O. Manos, C. Klewe, D. Meier, N. Teichert., J.-M. Schmalhorst, T. Kuschel, G. Reiss
    (Siehe online unter https://doi.org/10.1063/1.4999428)
  • Energy repartition of magnons in nonequilibrium steady states
    P. Yan, H. Zhang, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.024417)
  • Energy repartition of magnons in the nonequilibrium steady state. Phys. Rev. B 95, 024417 (1-17) (2017)
    P. Yan, G.E.W. Bauer, and H. Zhang
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.024417)
  • Enhancement of thermovoltage and tunnel magneto-Seebeck effect ratio in CoFeB based magnetic tunnel junctions by variation of the MgAl2O4 and MgO barrier thickness, Phys. Rev. B 96, 214435 (2017)
    T. Huebner, U. Martens, J. Walowski, A. Boehnke, J. Krieft, C. Heiliger, A. Thomas, G. Reiss, T. Kuschel, M. Münzenberg
    (Siehe online unter https://doi.org/10.1103/PhysRevB.96.214435)
  • Experimental investigation of the temperature-dependent magnon density and its influence on studies of spin-transfer-torque-driven systems. IEEE Magn. Lett. 8, 318005 (2017)
    T. Meyer, T. Brächer, F. Heussner, A.A. Serga, H. Naganuma, K. Mukaiyama, M. Oogane, Y. Ando, B. Hillebrands, P. Pirro
    (Siehe online unter https://doi.org/10.1109/LMAG.2017.2734773)
  • First-Principles Study of Exchange Interactions of Yttrium Iron Garnet. Phys. Rev. B 95, 014423 (1-7) (2017)
    L. Xie, G. Jin, L. He, G.E.W. Bauer, J. Barker, and K. Xia
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.014423)
  • Fundamentals and applications of the Landau–Lifshitz–Bloch equation. J. Phys. D: Appl. Phys. 50 (2017)
    U. Atxitia, D. Hinzke, and U. Nowak
    (Siehe online unter https://doi.org/10.1088/1361-6463/50/3/033003)
  • Imaging magnetic vortex configurations in ferromagnetic nanotubes. Phys. Rev. B 96, 024423 (2017)
    M. Wyss, A. Mehlin, B. Gross, A. Buchter, A. Farhan, M. Buzzi, A. Kleibert, G. Tütüncüoglu, F. Heimbach, A. Morral, D. Grundler, M. Poggio
    (Siehe online unter https://doi.org/10.1103/PhysRevB.96.024423)
  • Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes, Nat. Commun. 8, 1626 (2017)
    A. Boehnke, U. Martens, C. Sterwerf, A. Niesen, T. Huebner, M. von der Ehe, M. Meinert, T. Kuschel, A. Thomas, C. Heiliger, M. Münzenberg, G. Reiss
    (Siehe online unter https://doi.org/10.1038/s41467-017-01784-x)
  • Light scattering by magnons in whispering gallery mode cavities. Phys. Rev. B 96, 094412 (1-17) (2017)
    S. Sharma, Y.M. Blanter, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.96.094412)
  • Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method. Sci. Rep. 7: 46752. (2017)
    A. Sola, P. Bougiatioti, M. Kuepferling, D. Meier, G. Reiss, M. Pasquale, T. Kuschel, V. Basso
    (Siehe online unter https://doi.org/10.1038/srep46752)
  • Magnetic-proximity-induced magnetoresistance on topological insulators. Phys. Rev. B 95, 094428 (1-10) (2017)
    T. Chiba, S. Takahashi, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.094428)
  • Magnetisation switching of FePt nanoparticle recording medium by femtosecond laser pulses. IEEE Trans. Magn. 53, 1-4 (2017)
    S. Wittrock, D. Meyer, M. Muller, H. Ulrichs, J. Walowsk, M. Mansurova, U. Martens, M. Münzenberg
    (Siehe online unter https://doi.org/10.1109/TMAG.2017.2703856)
  • Magnetomechanical coupling and ferromagnetic resonance in magnetic nanoparticles. Phys. Rev. B 95, 134447 (1-10) (2017)
    H. Keshtgar, S. Streib, A. Kamra, Y. M. Blanter, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.134447)
  • Magnetomechanical coupling and ferromagnetic resonance in magnetic nanoparticles. Phys. Rev. B 95, 134447 (2017)
    H. Keshtgar, S. Streib, A. Kamra, Y.M. Blanter and Gerrit E. W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.134447)
  • Magnon Mode Selective Spin Transport in Compensated Ferrimagnets. Nano Lett. 17, 3334 (2017)
    J. Cramer, E.-J. Guo, S. Geprägs, A. Kehlberger, Y.P. Ivanov, K. Ganzhorn, F. Della Coletta, M. Althammer, H. Huebl, R. Gross, J. Kosel, M. Kläui, S.T.B. Goennenwein
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.6b04522)
  • Magnon nodal-line semimetals and drumhead surface states in anisotropic pyrochlore ferromagnets, Phys. Rev. B 95, 014418 (2017)
    A. Mook, J. Henk, and I. Mertig
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.014418)
  • Magnon planar Hall effect and anisotropic magnetoresistance in a magnetic insulator. Phys. Rev. B 95, 140402(R) (2017)
    J. Liu, L.J. Cornelissen, J. Shan, T. Kuschel, B.J. van Wees
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.140402)
  • Magnon transport in noncollinear spin textures: Anisotropies and topological magnon Hall effects. Phys. Rev. B 95, 020401(R) (2017)
    A. Mook, B. Göbel, J. Henk, and I. Mertig
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.020401)
  • Magnon-polaron transport in magnetic insulators. Phys. Rev. B 95, 144420 (1-11) (2017)
    B. Flebus, K. Shen, T. Kikkawa, K. Uchida, Z. Qiu, E. Saitoh, R.A. Duine, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.144420)
  • Nanoscale thermoelectrical detection of magnetic domain wall propagation. Phys. Rev. B 95, 220410(R) (2017)
    P. Krzysteczko, J. Wells, A.F. Scarioni, Z. Soban, T. Janda, X. Hu, V. Saidl, R.P. Campion, R. Mansell, J.-H. Lee, R.P. Cowburn, P. Nemec, O. Kazakova, J. Wunderlich, and H.W. Schumacher
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.220410)
  • Native defects in the Co2TiZ (Z = Si, Ge, Sn) full Heusler alloys: formation and influence on the thermoelectric properties. Phys. Rev. B 96, 054443 (2017)
    V. Popescu, P. Kratzer, S. Wimmer, and H. Ebert
    (Siehe online unter https://doi.org/10.1103/PhysRevB.96.054443)
  • Negative spin Hall magnetoresistance of Pt on the easy-plane bulk antiferromagnet NiO. Appl. Phys. Lett. 111, 052409 (2017)
    G.R. Hoogeboom, A. Aqeel, T. Kuschel, T.T.M. Palstra, B.J. van Wees
    (Siehe online unter https://doi.org/10.1063/1.4997588)
  • Noninteger-spin magnonic excitations in untextured magnets. Phys. Rev. B 96, 020411 (2017)
    A. Kamra, U. Agrawal, and W. Belzig
    (Siehe online unter https://doi.org/10.1103/PhysRevB.96.020411)
  • Nonlocal fieldlike spin-orbit torques in Rashba systems: Ab initio study of a Ag2Bi- terminated Ag(111) film grown on a ferromagnetic Fe(110) substrate. Phys. Rev. B 95, 134449 (2017)
    G. Géranton, B. Zimmermann, N.H. Long, Ph. Mavropoulos, S. Blügel, F. Freimuth and Y. Mokrousov
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.134449)
  • Nonlocal magnon spin transport in NiFe2O4 thin films. Appl. Phys. Lett. 110, 132406 (2017)
    J. Shan, P. Bougiatioti, L. Liang, G. Reiss, T. Kuschel, B.J. van Wees
    (Siehe online unter https://doi.org/10.1063/1.4979408)
  • Nonlocal magnon-polaron transport in yttrium iron garnet. Phys. Rev. B 96, 094412 (2017)
    L.J. Cornelissen, K. Oyanagi, T. Kikkawa, Z. Qiu, T. Kuschel, G.E.W. Bauer, B.J. van Wees and E. Saitoh
    (Siehe online unter https://doi.org/10.1103/PhysRevB.96.104441)
  • Nonlocal magnon-polaron transport in yttrium iron garnet. Phys. Rev. B 96, 104441 (2017)
    L.J. Cornelissen, K. Oyanagi, T. Kikkawa, Z. Qiu, T. Kuschel, G.E.W. Bauer, B.J. van Wees, and E. Saitoh
    (Siehe online unter https://doi.org/10.1103/PhysRevB.96.104441)
  • Observation of the spin Nernst effect. Nat. Mat. 16, 977-981 (2017)
    S. Meyer, Y. Chen, S. Wimmer, M. Althammer, T. Wimmer, R. Schlitz, S. Geprägs, H. Huebl, D. Ködderitzsch, H. Ebert, G.E.W. Bauer, R. Gross, S.T.B. Gönnenwein
    (Siehe online unter https://doi.org/10.1038/nmat4964)
  • Picosecond spin Seebeck effect. Phys. Rev. Lett. 118, 057201 (2017)
    J. Kimling, G.-M. Choi, J.T. Brangham, T. Matalla-Wagner, T. Huebner, T. Kuschel, F. Yang, D. G. Cahill
    (Siehe online unter https://doi.org/10.1103/physrevlett.118.057201)
  • Pumping laser excited spins through MgO barriers. J. Phys. D Appl. Phys. 50, 144003 (2017)
    U. Martens, J. Walowski, T. Schumann, M. Mansurova, A. Böhnke, T. Huebner, G. Reiss, A. Thomas, M. Muenzenberg
    (Siehe online unter https://doi.org/10.1088/1361-6463/aa5d32)
  • Quantitative disentanglement of spin Seebeck, proximity-induced, and ferromagnet-induced anomalous Nernst effect in normal-metal–ferromagnet bilayers, Phys. Rev. Lett. 119, 227205 (2017)
    P. Bougiatioti, C. Klewe, D. Meier, O. Manos, O. Kuschel, J. Wollschläger, L. Bouchenoire, S.D. Brown, J.-M. Schmalhorst, G. Reiss, T. Kuschel
    (Siehe online unter https://doi.org/10.1103/PhysRevLett.119.227205)
  • Quantitative separation of the anisotropic magnetothermopower and planar Nernst effect by the rotation of an in-plane thermal gradient. Sci. Rep. 7, 40586 (2017)
    O. Reimer, D. Meier, M. Bovender, L. Helmich, J.-O. Dreessen, J. Krieft, A. S. Shestakov, C. H. Back, J.-M. Schmalhorst, A. Hütten, G. Reiss, T. Kuschel
    (Siehe online unter https://doi.org/10.1038/srep40586)
  • Reconstruction of an effective magnon mean free path distribution from spin Seebeck measurements in thin films. New J. Phys. 19, 013011 (2017)
    E. Chavez-Ángel, R. A. Zarate, S. Fuentes et al.
    (Siehe online unter https://doi.org/10.1088/1367-2630/aa5163)
  • Seebeck Effect in Nanoscale Ferromagnets
    D.V. Fedorov, M. Gradhand, K. Tauber, G.E.W. Bauer, and I. Mertig
    (Siehe online unter https://doi.org/10.1088/1361-648X/ac3b26)
  • Spin pumping and shot noise in ferrimagnets: bridging ferro- and antiferromagnets. Phys. Rev. Lett. 119, 197201 (2017)
    A. Kamra, W. Belzig
    (Siehe online unter https://doi.org/10.1103/physrevlett.119.197201)
  • Spin-flip Enhanced Thermoelectricity in Superconductor-Ferromagnet Bilayers
    A. Rezaei, A. Kamra, P. Machon, and W. Belzig
    (Siehe online unter https://doi.org/10.1088/1367-2630/aad2a3)
  • Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets. Phys. Rev. B 95, 014403 (2017)
    J. Zelezny, H. Gao, A. Manchon, F. Freimuth, Y. Mokrousov, J. Zemen, J. Masek, J. Sinova and T. Jungwirth
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.014403)
  • Temperature-dependence of the non-local spin Seebeck effect in YIG/Pt nanostructures. AIP Advances 7, 085102 (2017)
    K. Ganzhorn, T. Wimmer, J. Cramer, R. Schlitz, S. Geprägs, G. Jakob, R. Gross, H. Huebl, M. Kläui, S.T.B. Goennenwein
    (Siehe online unter https://doi.org/10.1063/1.4986848)
  • Terahertz spin currents and inverse spin Hall effect in thin-film heterostructures containing complex magnetic compounds. SPIN, 7, 1740010 (2017)
    T. Seifert, U. Martens, S. Günther, M.A.W. Schoen, F. Radu, X. Z. Chen, I. Lucas, R. Ramos, M. H. Aguirre, P.A. Algarabel, A. Anadón, H. Körner, J. Walowski, C. Back, M. R. Ibarra, L. Morellón, E. Saitoh, M. Wolf, C. Song, K. Uchida, M. Münzenberg, I. Radu, and T. Kampfrath
    (Siehe online unter https://doi.org/10.1142/S2010324717400100)
  • Theory of the magnon-mediated tunnel magneto-Seebeck effect. Phys. Rev. B 96, 094429 (1-8) (2017)
    B. Flebus, G.E.W. Bauer, R.A. Duine, and Y. Tserkovnyak
    (Siehe online unter https://doi.org/10.1103/PhysRevB.96.094429)
  • Thermal Control of the Magnon-Photon Coupling in a Notch Filter coupled to a Yttrium-Iron- Garnet/Platinum System. Phys. Rev. B 96, 064407 (1-6) (2017)
    V. Castel, R. Jeunehomme, J. Youssef, N. Vukadinovic, A. Manchec, F. K. Dejene, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.96.064407)
  • Thermal spin torques in magnetic insulators. Phys. Rev. B 95, 104432 (2017)
    H. Yu, S. D. Brechet, P. Che, F. A. Vetro, M. Collet, S. Tu, Y. G. Zhang, Y. Zhang, T. Stueckler, L. Wang, H. Cui, D. Wang, C. Zhao, P. Bortolotti, A. Anane, J-Ph. Ansermet, and W. Zhao
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.104432)
  • Thermally induced magnon accumulation in two-sublattice magnets. Phys. Rev. B 95, 054411 (2017)
    U. Ritzmann, D. Hinzke and U. Nowak
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.054411)
  • THz electrical writing speed in an antiferromagnetic memory
    K. Olejnik, T. Seifert, Z. Kaspar, V. Novak, P. Wadley, R.P. Campion, M. Baumgartner, P. Gambardella, P. Nemec, J. Wunderlich, J. Sinova, P. Kuzel, M. Müller, T. Kampfrath, and T. Jungwirth
    (Siehe online unter https://doi.org/10.48550/arXiv.1711.08444)
  • Tunable Short-Wavelength Spin-Wave Emission and Confinement in Anisotropy-Modulated Multiferroic Heterostructures. Phys. Rev. Appl. 8, 014020 (2017)
    S.J. Hämäläinen, F. Brandl, K.J.A. Franke, D. Grundler, S. van Dijken
    (Siehe online unter https://doi.org/10.1103/PhysRevApplied.8.014020)
  • Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter. Appl. Phys. Lett. 110, 252402 (2017)
    T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath
    (Siehe online unter https://doi.org/10.1063/1.4986755)
  • Yu-Shiba-Rusinov bands in superconductors in contact with a magnetic insulator. J. Magn. Magn. Mat.
    W. Belzig, D. Beckmann
    (Siehe online unter https://doi.org/10.1016/j.jmmm.2017.10.062)
  • Anomalous Nernst effect on the nanometer scale: exploring three-dimensional temperature gradients in magnetic tunnel junctions
    U. Martens, T. Huebner, H. Ulrichs, O. Reimer, T. Kuschel, R.R. Tamming, C.-L. Chang, R.I. Tobey, A. Thomas, M. Münzenberg, J. Walowski
    (Siehe online unter https://doi.org/10.1038/s42005-018-0063-y)
  • Anomalous Nernst effect on the nanometer scale: Exploring three-dimensional temperature gradients in magnetic tunnel junctions
    U. Martens, T. Huebner, H. Ulrichs, O. Reimer, T. Kuschel, R. Tamming, C.-L. Chang, R.I. Tobey, A. Thomas, M. Münzenberg, J. Walowski
    (Siehe online unter https://doi.org/10.1038/s42005-018-0063-y)
  • Complex Terahertz and Direct Current Inverse Spin Hall Effect in YIG/Cu1–xIrx Bilayers Across a Wide Concentration Range. Nano Lett.. 18, 1064 (2018)
    J. Cramer, T. Seifert, A. Kronenberg et al.
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.7b04538)
  • Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy
    T. Seifert, S. Jaiswal, J. Barker, I. Razdolski, J. Cramer, O. Gueckstock, S. Maehrlein, L. Nadvornik S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Münzenberg, S.T.B. Goennenwein, G. Woltersdorf, P.W. Brouwer, M. Wolf, M. Kläui, and T. Kampfrath
    (Siehe online unter https://doi.org/10.1038/s41467-018-05135-2)
  • Imaging stray magnetic field of individual ferromagnetic nanotubes. Nano Lett. (2018)
    D. Vasyukov, L Ceccarelli, M. Wyss, B. Gross, A. Schwarb, A. Mehlin, N. Rossi, G. Tütüncüoglu, F. Heimbach, R.R. Zamani, A. Kovács, A. Morral, D. Grundler, M. Poggio
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.7b04386)
  • Indirect coupling of magnons by cavity photons. Phys. Rev. B 97, 014419 (1-8) (2018)
    B.Z. Rameshti and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/PhysRevB.97.014419)
  • Investigating spin-transfer torques induced by thermal gradients in magnetic tunnel junctions by using micro-cavity ferromagnetic resonance. J. Phys. D: “Special Issue on Spin Caloritronics (2018)
    H. Cansever, R. Narkowicz, K. Lenz, C. Fowley, L. Ramasubramanian, O. Yildirim, A. Niesen, T. Huebner, G. Reiss, J. Lindner, J. Fassbender1, and A. M. Deac
    (Siehe online unter https://doi.org/10.1088/1361-6463/aac03d)
  • Magnon detection using a ferroic collinear multilayer spin valve. Nat. Commun. (2018)
    J. Cramer, F. Fuhrmann, U. Ritzmann et al.
    (Siehe online unter https://doi.org/10.1038/s41467-018-03485-5)
  • Magnon scattering in the transport coefficients of CoFe alloys
    S. Srichandan, S. Wimmer, M. Kronseder, H. Ebert, C.H. Back, C. Strunk
    (Siehe online unter https://doi.org/10.1103/PhysRevB.98.020406)
  • Spin transport across antiferromagnets induced by the spin Seebeck effect. J. Appl. Phys. (2018)
    J. Cramer, U. Ritzmann, B. Dong et al.
    (Siehe online unter https://doi.org/10.1088/1361-6463/aab223)
  • Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling
    T. Huebner, U. Martens, J. Walowski, M. Münzenberg, A. Thomas, G. Reiss, T. Kuschel
    (Siehe online unter https://doi.org/10.1088/1361-6463/aabfb3)
  • Voltage control of interface rare-earth magnetic moments. Phys. Rev. Lett. 120, 027201 (2018)
    A.O. Leon, A.B. Cahaya, and G.E.W. Bauer
    (Siehe online unter https://doi.org/10.1103/physrevlett.120.027201)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung