Detailseite
Projekt Druckansicht

Transport in graphene and statistics of complex systems

Antragsteller Dr. Holger Hennig
Fachliche Zuordnung Statistische Physik, Nichtlineare Dynamik, Komplexe Systeme, Weiche und fluide Materie, Biologische Physik
Theoretische Physik der kondensierten Materie
Förderung Förderung von 2011 bis 2014
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 198432750
 
Erstellungsjahr 2014

Zusammenfassung der Projektergebnisse

While the music produced by an ensemble is influenced by multiple factors including musical genre, musician skill, and individual interpretation, rhythmic synchronization is at the foundation of musical interaction. Here, we study the statistical nature of the mutual interaction between two humans playing rhythms. We find that the interbeat intervals of both laypeople and professional musicians exhibit scale-free (power law) cross-correlations. Surprisingly, the next beat to be played by one person is dependent on the entire history of the other person's interbeat intervals on time scales up to several minutes. To understand this finding, we propose a general stochastic model for Mutually Interacting Complex Systems (MICS) which suggests a physiologically-motivated explanation for the occurrence of scale-free crosscorrelations. We show that the observed long-term memory phenomenon in rhythmic synchronization can be imitated by `fractal' coupling of separately recorded or synthesized audio tracks. The results can be used to introduce human interactions in audio sequences (e.g., in electronic music), for which a U.S. patent was filed. While this study provides an understanding of fundamental characteristics of timing and synchronization at the inter-brain level, the MICS model may also be applied to study the dynamics of other complex systems where scale-free cross-correlations have been observed, including econophysics, physiological time series, and collective behavior of animal flocks. H. Hennig, R. Fleischmann, T. Geisel. Immer haarscharf daneben. Spektrum der Wissenschaft 9, 16-20 (2012)

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung