Detailseite
Projekt Druckansicht

SPP 1601:  New Frontiers in Sensitivity for EPR Spectroscopy: from Biological Cells to Nano Materials

Fachliche Zuordnung Chemie
Förderung Förderung von 2012 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 198612328
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

The priority program SPP 1601 brought together about 40 German principal investigators (PIs) working on very different areas of natural sciences, developing electron spin resonance (ESR/EPR) as a common spectroscopic tool. The technique allows for the detection of paramagnetic centers and their coupled magnetic nuclei on a time scale as short as nanoseconds and with a spatial resolution from the atomic up to the nanometer scale. Our strategy was to cross-fertilize several advances in specific areas of biological and material sciences taking advantage of recent progress in hardware, microwaves and digital technologies as well as leveraging synergy with the field of nuclear magnetic resonance (NMR). The priority program bundled all these research areas in a coordinated effort, with the shared goal to increase sensitivity of EPR in biology, chemistry, materials science, and physics and opening new application fields such as in-cell EPR or studies of molecular machines, thin-film solar cells and nano materials. In a synergistic fashion between chemistry, physics and theory, groups explored the capability of pulsed experiments based on arbitrary microwave pulses using recently available fast electronics. Other groups developed new approaches for spectroscopy in the THz range or micro resonators to access nanostructures. In a parallel track, groups working on single molecule detection took inspiration from recent developments in spectroscopy of biomolecules and labelling procedures to establish new atomic scale sensors. Also, on the biological and biophysical side tremendous progress was achieved in the field of spin labelling for biomolecules, which led to new studies on molecular machines and of biomolecules in cell. Major scientific results were presented to the reviewer’s panel in a final colloquium in Leipzig, September 2018. The priority program has substantially contributed in reshaping the research landscape in EPR spectroscopy in Germany and world-wide, but has also repositioned the importance of EPR with respect to other significant areas of spectroscopy, for instance NMR, or biophysics and physics. The concept of the SPP was so attractive, that the National Science Foundation (NSF) was immediately inspired (in 2012) to create a parallel network (called SharedEPR), which merged in a mutually sponsored German/US collaborative program. This unprecedented initiative led DFG to fund a large amount of international research exchanges as well as the attendance of international conferences and schools worldwide. In addition to the collaboration with the US, exchange with Israel was particularly in forefront. Several initiatives were adopted to support young investigators, for instance though research exchanges, schools and the organization of their own yearly young investigator’s workshops. Particular attention was dedicated to promote the career of young female students and researchers. All these measures fostered a new generation of successful scientists, with 38 PhD graduations, 4 habilitations and 11 professorships in Germany. New international activities were started, for instance the draft of the first Whitepaper on EPR contributed by 28 international experts including several SPP PIs.

Projektbezogene Publikationen (Auswahl)

  • A cryogenic receiver for EPR. J. Mag. Res. 2013, 237, 79-84
    Narkowicz, R.; Ogata, H.; Reijerse, E.; Suter, D.
    (Siehe online unter https://doi.org/10.1016/j.jmr.2013.09.017)
  • A cryogenic receiver for EPR. J. Mag. Res. 2013, 237, 79-84
    Narkowicz, R.; Ogata, H.; Reijerse, E.; Suter, D., A cryogenic receiver for EPR
    (Siehe online unter https://doi.org/10.1016/j.jmr.2013.09.017)
  • Detecting and polarizing nuclear spins with double resonance on a single electron spin. Phys Rev. Lett. 2013, 111 (6), 067601
    London, P.; Scheuer, J.; Cai, J. M.; Schwarz, I.; Retzker, A.; Plenio, M. B.; Katagiri, M.; Teraji, T.; Koizumi, S.; Isoya, J.; Fischer, R.; McGuinness, L. P.; Naydenov, B.; Jelezko, F.
    (Siehe online unter https://doi.org/10.1103/physrevlett.111.067601)
  • Detection of a Few Metallo-Protein Molecules Using Color Centers in Nanodiamonds. Nano Lett. 2013, 13 (7), 3305-3309
    Ermakova, A.; Pramanik, G.; Cai, J. M.; Algara-Siller, G.; Kaiser, U.; Weil, T.; Tzeng, Y. K.; Chang, H. C.; McGuinness, L. P.; Plenio, M. B.; Naydenov, B.; Jelezko, F.
    (Siehe online unter https://doi.org/10.1021/nl4015233)
  • A Genetically Encoded Spin Label for Electron Paramagnetic Resonance Distance Measurements. J. Am. Chem. Soc. 2014, 136 (17), 6510-6510
    Schmidt, M. J.; Borbas, J.; Drescher, M.; Summerer, D.
    (Siehe online unter https://doi.org/10.1021/ja411535q)
  • Genetically Encoded Spin Label. WO2015107071A1 (2014)
    D. Summerer, M. J. Schmidt, M. Drescher
  • Broadband electrically detected magnetic resonance using adiabatic pulses. J. Mag. Res. 2015, 254, 62-9
    Hrubesch, F. M.; Braunbeck, G.; Voss, A.; Stutzmann, M.; Brandt, M. S.
    (Siehe online unter https://doi.org/10.1016/j.jmr.2015.02.010)
  • Broadband spin echoes and broadband SIFTER in EPR. J. Mag. Res. 2015, 250, 55-62
    Schöps, P.; Spindler, P. E.; Marko, A.; Prisner, T. F.
    (Siehe online unter https://doi.org/10.1016/j.jmr.2014.10.017)
  • Carr–Purcell Pulsed Electron Double Resonance with Shaped Inversion Pulses. Phys. Chem. Lett., 2015, 6, 4331-4335
    Spindler, P.E.; Waclawska, I.; Endeward, B.; Plackmeyer, J.; Ziegler, C.; Prisner, T.F.
    (Siehe online unter https://doi.org/10.1021/acs.jpclett.5b01933)
  • Compact electrically detected magnetic resonance setup. AIP Adv. 2015, 5 (4), 047139
    Eckardt, M.; Behrends, J.; Münter, D.; Harneit, W.
    (Siehe online unter https://doi.org/10.1063/1.4919247)
  • CW and pulsed electrically detected magnetic resonance spectroscopy at 263GHz/12T on operating amorphous silicon solar cells. J. Mag. Res. 2015, 257, 94-101
    Akhtar, W.; Schnegg, A.; Veber, S.; Meier, C.; Fehr, M.; Lips, K.
    (Siehe online unter https://doi.org/10.1016/j.jmr.2015.05.012)
  • High cooperativity coupling between a phosphorus donor spin ensemble and a superconducting microwave resonator. Appl. Phys. Lett. 2015, 107 (14), 142105
    Zollitsch, C. W.; Mueller, K.; Franke, D. P.; Goennenwein, S. T. B.; Brandt, M. S.; Gross, R.; Huebl, H.
    (Siehe online unter https://doi.org/10.1063/1.4932658)
  • Hydrogen bond network between amino acid radical intermediates on the proton-coupled electron transfer pathway of E. coli α2 ribonucleotide reductase. J. Am. Chem. Soc. 2015, 137 (1), 289-98
    Nick, T. U.; Lee, W.; Kossmann, S.; Neese, F.; Stubbe, J.; Bennati, M.
    (Siehe online unter https://doi.org/10.1021/ja510513z)
  • In vivo EPR on spin labeled colicin A reveals an oligomeric assembly of the pore-forming domain in E. coli membranes. Phys. Chem. Chem. Phys. 2015, 17 (7), 4875-4878
    Dunkel, S.; Pulagam, L. P.; Steinhoff, H. J.; Klare, J. P.
    (Siehe online unter https://doi.org/10.1039/c4cp05638h)
  • Mechanism for nuclear and electron spin excitation by radio frequency current. Phys. Rev. B 2015, 92 (22), 220418
    Müllegger, S.; Rauls, E.; Gerstmann, U.; Tebi, S.; Serrano, G.; Wiespointner-Baumgarthuber, S.; Schmidt, W. G.; Koch, R.
    (Siehe online unter https://doi.org/10.1103/PhysRevB.92.220418)
  • Sensor comprising a piezomagnetic or piezoelectric element on a diamond substrate with a colour center. EP3132278B1 (2017)
    J. Cai, F. Jelezko, M.B. Plenio
  • Single Crystal Electron Paramagnetic Resonance with Dielectric Resonators of Mononuclear Cu2+ Ions in a Metal–Organic Framework Containing Cu2 Paddle Wheel Units. J. Org. Chem. C 2015, 119 (33), 19171-19179
    Friedländer, S.; Šimėnas, M.; Kobalz, M.; Eckold, P.; Ovchar, O.; Belous, A. G.; Banys, J. r.; Krautscheid, H.; Pöppl, A.
    (Siehe online unter https://doi.org/10.1021/acs.jpcc.5b05019)
  • Transient electrically detected magnetic resonance spectroscopy applied to organic solar cells. Appl. Phys. Lett. 2015, 107 (4), 043302
    Kraffert, F.; Steyrleuthner, R.; Meier, C.; Bittl, R.; Behrends, J.
    (Siehe online unter https://doi.org/10.1063/1.4927446)
  • Tuner and radiation shield for planar electron paramagnetic resonance microresonators. Rev. Sci. Instrum. 2015, 86 (2), 024701
    Narkowicz, R.; Suter, D.
    (Siehe online unter https://doi.org/10.1063/1.4906898)
  • 28.2 A 14GHz battery-operated point-of-care ESR spectrometer based on a 0.13µm CMOS ASIC, 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, 476-477
    Handwerker, J.; Schlecker, B.; Wachter, U.; Radermacher, P.; Ortmanns, M.; Anders, J.
    (Siehe online unter https://doi.org/10.1109/ISSCC.2016.7418114)
  • Continuous-Wave Single-Crystal Electron Paramagnetic Resonance of Adsorption of Gases to Cupric Ions in the Zn(II)-Doped Porous Coordination Polymer Cu2.965Zn0.035(btc)2. J. Org. Chem. C 2016, 120 (48), 27399-27411
    Friedländer, S.; Petkov, P. S.; Bolling, F.; Kultaeva, A.; Böhlmann, W.; Ovchar, O.; Belous, A. G.; Heine, T.; Pöppl, A.
    (Siehe online unter https://doi.org/10.1021/acs.jpcc.6b09456)
  • Multitechnique investigation of Dy3 – implications for coupled lanthanide clusters. Chem. Sci. 2016, 7 (7), 4347-4354
    Gysler, M.; El Hallak, F.; Ungur, L.; Marx, R.; Hakl, M.; Neugebauer, P.; Rechkemmer, Y.; Lan, Y.; Sheikin, I.; Orlita, M.; Anson, C. E.; Powell, A. K.; Sessoli, R.; Chibotaru, L. F.; van Slageren, J.
    (Siehe online unter https://doi.org/10.1039/c6sc00318d)
  • Spacers for Geometrically Well-Defined Water-Soluble Molecular Rulers and Their Application. J. Org, Chem. 2016, 81 (6), 2549-2571
    Qi, M.; Hülsmann, M.; Godt, A.
    (Siehe online unter https://doi.org/10.1021/acs.joc.6b00125)
  • Spacers for Geometrically Well-Defined Water-Soluble Molecular Rulers and Their Application. J. Org, Chem. 2016, 81 (6), 2549-2571
    Qi, M.; Hülsmann, M.; Godt, A.
    (Siehe online unter https://doi.org/10.1021/acs.joc.6b00125)
  • SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation. J. Mag. Res. 2016, 263, 45-54
    Pribitzer, S.; Doll, A.; Jeschke, G.
    (Siehe online unter https://doi.org/10.1016/j.jmr.2015.12.014)
  • A modified RF-transmission line concept for probe excitation in light-induced magnetic resonance force microscopy, 2017 IEEE Asia Pacific Microwave Conference (APMC), 13-16 Nov. 2017; 2017, 536-539
    Baer, C.; Orend, K.; Musch, T.; Deichmöller, J.; Havenith, M.
    (Siehe online unter https://doi.org/10.1109/APMC.2017.8251500)
  • A molecular quantum spin network controlled by a single qubit. Sci. Adv. 2017, 3 (8), e1701116
    Schlipf, L.; Oeckinghaus, T.; Xu, K.; Dasari, D. B. R.; Zappe, A.; de Oliveira, F. F.; Kern, B.; Azarkh, M.; Drescher, M.; Ternes, M.; Kern, K.; Wrachtrup, J.; Finkler, A.
    (Siehe online unter https://doi.org/10.1126/sciadv.1701116)
  • A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. J. Chem. Phys. 2017, 146 (16), 164105
    Saitow, M.; Becker, U.; Riplinger, C.; Valeev, E. F.; Neese, F.
    (Siehe online unter https://doi.org/10.1063/1.4981521)
  • Efficient Electrical Spin Readout of NV− Centers in Diamond. Phys Rev. Lett. 2017, 118 (3), 037601
    Hrubesch, F. M.; Braunbeck, G.; Stutzmann, M.; Reinhard, F.; Brandt, M. S.
    (Siehe online unter https://doi.org/10.1103/physrevlett.118.037601)
  • Nanoscale nuclear magnetic resonance with chemical resolution. Science 2017, 357 (6346), 67-71
    Aslam, N.; Pfender, M.; Neumann, P.; Reuter, R.; Zappe, A.; Fávaro de Oliveira, F.; Denisenko, A.; Sumiya, H.; Onoda, S.; Isoya, J.; Wrachtrup, J.
    (Siehe online unter https://doi.org/10.1126/science.aam8697)
  • Nanoscale x-ray investigation of magnetic metallofullerene peapods. Nanotechnology 2017, 28 (43), 435703
    Fritz, F.; Westerström, R.; Kostanyan, A.; Schlesier, C.; Dreiser, J.; Watts, B.; Houben, L.; Luysberg, M.; Avdoshenko, S. M.; Popov, A. A.; Schneider, C. M.; Meyer, C.
    (Siehe online unter https://doi.org/10.1088/1361-6528/aa8b4c)
  • Orthogonal spin labeling using click chemistry for in vitro and in vivo applications. J. Mag. Res. 2017, 275, 38-45
    Kucher, S.; Korneev, S.; Tyagi, S.; Apfelbaum, R.; Grohmann, D.; Lemke, E. A.; Klare, J. P.; Steinhoff, H. J.; Klose, D.
    (Siehe online unter https://doi.org/10.1016/j.jmr.2016.12.001)
  • Pulsed triple electron resonance (TRIER) for dipolar correlation spectroscopy. J. Mag. Res. 2017, 282, 119-128
    Pribitzer, S.; Sajid, M.; Hülsmann, M.; Godt, A.; Jeschke, G.
    (Siehe online unter https://doi.org/10.1016/j.jmr.2017.07.012)
  • Recent progress in synchrotron-based frequencydomain Fourier-transform THz-EPR. J. Mag. Res. 2017, 280, 10-19
    Nehrkorn, J.; Holldack, K.; Bittl, R.; Schnegg, A.
    (Siehe online unter https://doi.org/10.1016/j.jmr.2017.04.001)
  • Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy. J. Mag. Res. 2017, 282, 10-17
    Kraffert, F.; Bahro, D.; Meier, C.; Denne, M.; Colsmann, A.; Behrends, J.
    (Siehe online unter https://doi.org/10.1016/j.jmr.2017.06.015)
  • Triplet Excitons in Highly Efficient Solar Cells Based on the Soluble Small Molecule p- DTS(FBTTh2)2. Adv. Energ. Mater. 2017, 7 (7), 1602016
    Väth, S.; Tvingstedt, K.; Baumann, A.; Heiber, M. C.; Sperlich, A.; Love, J. A.; Nguyen, T.-Q.; Dyakonov, V.
    (Siehe online unter https://doi.org/10.1002/aenm.201602016)
  • Versatile Trityl Spin Labels for Nanometer Distance Measurements on Biomolecules In Vitro and within Cells. Angew. Chem. Int. Edit. 2017, 56 (1), 177-181
    Jassoy, J. J.; Berndhäuser, A.; Duthie, F.; Kühn, S. P.; Hagelueken, G.; Schiemann, O.
    (Siehe online unter https://doi.org/10.1002/anie.201609085)
  • (2018) Topology of active, membrane-embedded Bax in the context of a toroidal pore. Cell Death Diff. 2018, 25, 1717–1731
    S. Bleicken, T. E. Assafa, C. Stegmueller, A. Wittig, A. J. Garcia-Saez, E. Bordignon
    (Siehe online unter https://doi.org/10.1038/s41418-018-0184-6)
  • Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory. J. Chem. Phys. 2018, 149 (3), 034104
    Saitow, M.; Neese, F.
    (Siehe online unter https://doi.org/10.1063/1.5027114)
  • Calculation of spin-spin zero-field splitting within periodic boundary conditions: Towards all-electron accuracy. Phys. Rev. B 2018, 97 (11), 115135
    Biktagirov, T.; Schmidt, W. G.; Gerstmann, U.
    (Siehe online unter https://doi.org/10.1103/PhysRevB.97.115135)
  • Cooperative broadband spin echoes through optimal control. J. Mag. Res. 2018, 286, 115-137
    Kallies, W.; Glaser, S. J.
    (Siehe online unter https://doi.org/10.1016/j.jmr.2017.10.011)
  • Electron Paramagnetic Resonance Spectroscopy at Surfaces. In Encyclopedia of Interfacial Chemistry, Wandelt, K., Ed. Elsevier: Oxford, 2018; pp 129-142
    Clawin, P. M.; Richter, N. F.; Riedel, W.; Ronneburg, H.; Risse, T.
    (Siehe online unter https://doi.org/10.1016/B978-0-12-409547-2.12820-3)
  • Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes. Phys. Chem. Chem. Phys. 2018, 20 (15), 10470-10492
    Clayton, J. A.; Keller, K.; Qi, M.; Wegner, J.; Koch, V.; Hintz, H.; Godt, A.; Han, S.; Jeschke, G.; Sherwin, M. S.; Yulikov, M.
    (Siehe online unter https://doi.org/10.1039/c7cp08507a)
  • Ultra-broadband EPR spectroscopy in field and frequency domains. Phys. Chem. Chem. Phys. 2018, 20 (22), 15528-15534
    Neugebauer, P.; Bloos, D.; Marx, R.; Lutz, P.; Kern, M.; Aguilà, D.; Vaverka, J.; Laguta, O.; Dietrich, C.; Clérac, R.; van Slageren, J.
    (Siehe online unter https://doi.org/10.1039/c7cp07443c)
  • A new perspective on membrane-embedded Bax oligomers using DEER and bioresistant orthogonal spin labels. Sci. Rep. 2019, 9 (1), 13013
    Teucher, M.; Zhang, H.; Bader, V.; Winklhofer, K. F.; García-Sáez, A. J.; Rajca, A.; Bleicken, S.; Bordignon, E.
    (Siehe online unter https://doi.org/10.1038/s41598-019-49370-z)
  • Application of commercially available fluorophores as triplet spin probes in EPR spectroscopy. Mol. Phys. 2019, 117 (19), 2688-2699
    Serrer, K.; Matt, C.; Sokolov, M.; Kacprzak, S.; Schleicher, E.; Weber, S.
    (Siehe online unter https://doi.org/10.1080/00268976.2019.1608379)
  • Device and method for generating and detecting a transient magnetization of a sample. US Patent App. 15/779,104 (2019), Deutsches Patent Nr. DE102015120644B3 (03.09.2017)
    J. Anders, K. Lips
  • Examination of the Magneto-Structural Effects of Hangman Groups on Ferric Porphyrins by EPR. Inorg. Chem. 2019, 58 (20), 14228-14237
    Nehrkorn, J.; Bonke, S. A.; Aliabadi, A.; Schwalbe, M.; Schnegg, A.
    (Siehe online unter https://doi.org/10.1021/acs.inorgchem.9b02348)
  • Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix. Sci. Adv. 2019, 5 (10), eaay1394
    Sidabras, J. W.; Duan, J.; Winkler, M.; Happe, T.; Hussein, R.; Zouni, A.; Suter, D.; Schnegg, A.; Lubitz, W.; Reijerse, E. J.
    (Siehe online unter https://doi.org/10.1126/sciadv.aay1394)
  • Quantitative Modeling of Superconducting Planar Resonators for Electron Spin Resonance. Phys. Rev. Appl. 2019, 12 (2), 024021
    Weichselbaumer, S.; Natzkin, P.; Zollitsch, C. W.; Weiler, M.; Gross, R.; Huebl, H.
    (Siehe online unter https://doi.org/10.1103/PhysRevApplied.12.024021)
  • Studying Conformational Changes of the Yersinia Type-III-Secretion Effector YopO in Solution by Integrative Structural Biology. Structure 2019, 27 (9), 1416-1426.e3
    Peter, M. F.; Tuukkanen, A. T.; Heubach, C. A.; Selsam, A.; Duthie, F. G.; Svergun, D. I.; Schiemann, O.; Hagelueken, G.
    (Siehe online unter https://doi.org/10.1016/j.str.2019.06.007)
  • Towards Low-Cost, High-Sensitivity Point-of-Care Diagnostics Using VCO-Based ESR-on-a-Chip Detectors. IEEE Sens. J. 2019, 19 (20), 8995-9003
    Schlecker, B.; Hoffmann, A.; Chu, A.; Ortmanns, M.; Lips, K.; Anders, J.
    (Siehe online unter https://doi.org/10.1109/JSEN.2018.2875767)
  • Towards Low-Cost, High-Sensitivity Point-of-Care Diagnostics Using VCO-Based ESR-on-a-Chip Detectors. IEEE Sens. J. 2019, 19 (20), 8995-9003
    Schlecker, B.; Hoffmann, A.; Chu, A.; Ortmanns, M.; Lips, K.; Anders, J.
    (Siehe online unter https://doi.org/10.1109/JSEN.2018.2875767)
  • Cross-polarisation ENDOR for spin-1 deuterium nuclei. Mol. Phys. 2020, 118 (18), e1763490
    Bejenke, I.; Zeier, R.; Rizzato, R.; Glaser, S. J.; Bennati, M.
    (Siehe online unter https://doi.org/10.1080/00268976.2020.1763490)
  • Cross-polarisation ENDOR for spin-1 deuterium nuclei. Mol. Phys. 2020, 118 (18), e1763490
    Bejenke, I.; Zeier, R.; Rizzato, R.; Glaser, S. J.; Bennati, M.
    (Siehe online unter https://doi.org/10.1080/00268976.2020.1763490)
  • Optically and electrically excited intermediate electronic states in donor:acceptor based OLEDs. Mater. Horiz. 2020, 7 (4), 1126-1137
    Bunzmann, N.; Weissenseel, S.; Kudriashova, L.; Gruene, J.; Krugmann, B.; Grazulevicius, J. V.; Sperlich, A.; Dyakonov, V.
    (Siehe online unter https://doi.org/10.1039/C9MH01475F)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung