Detailseite
Projekt Druckansicht

Geometrische Analysis, insbesondere im Hinblick auf ihre Anwendungen in Biologie und Kontinuumsmechanik

Fachliche Zuordnung Mathematik
Förderung Förderung von 2011 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 200238036
 
Erstellungsjahr 2020

Zusammenfassung der Projektergebnisse

We have addressed applied analysis problems, mainly arising in nonlinear elasticity, in which geometric effects play an important role. This includes the interplay between homogenisation and thin film asymptotics; the analysis of narrow and thin elastic ribbons; as well as a first step towards shape optimisation for nonlinearly elastic plates. More general results include a suitable notion of stationarity for intrinsically strained plate theories in non Euclidean elasticity, along with some surprising examples of stationary points. Moreover, we have sharpened some earlier regularity results about stationary points of Kirchhoff’s plate theory, and we have constructed examples proving the optimality of those results. We have also addressed questions of rigidity and its failure for isometric immersions and the related Monge-Ampère equation. Finally, we have continued our study of intrinsically biharmonic maps between manifolds.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung