Detailseite
Projekt Druckansicht

Lernen effizienter Abtastung für das aktive Sehen

Fachliche Zuordnung Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing
Förderung Förderung von 2011 bis 2016
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 200335461
 
Erstellungsjahr 2015

Zusammenfassung der Projektergebnisse

The different sensing frameworks developed during Esensing are novel approaches to the problem of how to adaptively sense the environment, i.e., how to extract relevant information from a particular environment that is previously unknown. Since they are based on learning and can be embedded in an action-perception loop, the novel methods have a great potential in the context of autonomously acting agents that must rely on efficient sensing schemes. Our approaches are inspired by Active Vision, motivated by Compressed Sensing, and are based on the principles of Sparse Coding. The scientific contribution we have accomplished during Esensing is twofold: (i) we developed new algorithms (CA, OSC, GF-OSC) to learn representations for an efficient encoding and sensing, and (ii) we developed new performant hierarchical sensing schemes (AHS, HMS), which are adaptive, because sensing operations are not conducted in a random fashion but are more carefully selected depending on both, the environment and the particular scene that is sensed. We developed AHS and HMS in the context of actionperception loops and collaborated with our partners in Leipzig and Berkeley. Our methods are inspired by biological sensing strategies and enable mobile agents to autonomously adapt their representations and their sensing strategies to a particular environment, which can then be sensed more efficiently.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung