Detailseite
Projekt Druckansicht

Selektionstheorie für Grenzflächendynamik - Kruskal-Segur-Methode ohne Integralgleichungen

Fachliche Zuordnung Statistische Physik, Nichtlineare Dynamik, Komplexe Systeme, Weiche und fluide Materie, Biologische Physik
Förderung Förderung von 2011 bis 2015
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 202984381
 
Ziel des Vorhabens ist die Erweiterung und Anwendung der auf der Kruskal-Segur-Methode beruhenden Selektionstheorie für die Bewegung von Phasengrenzen auf bisher schwer behandelbare oder völlig unzugängliche Fälle. Dies wird durch ein in unserer Arbeitsgruppe entwickeltes Verfahren ermöglicht, das ohne eine die Grenzflächendynamik beschreibende Integrodifferentialgleichung auskommt. Damit werden erstmals Systeme mit nichtlinearen Volumengleichungen einer rigorosen Analyse zugänglich gemacht. Es wird direkt mit den partiellen Differentialgleichungen des Problems gearbeitet; der neue Aspekt des Verfahrens besteht in einer Kombination der Zauderer- Dekomposition mit der Kruskal-Segur-Methode. Untersucht werden sollen sowohl einige einfachere Situationen, die zur (weiteren) Validierung der Methode dienen können, als auch komplexere Probleme mit Konvektion oder solche mit unkonventionellen Randbedingungen, wie sie etwa bei der Erstarrung von Helium vorliegen. Mit der theoretischen Analyse der letztgenannten Systeme wird physikalisches Neuland betreten. Für alle zu betrachtenden Situationen ist angestrebt, das analytische Verständnis der Geschwindigkeits- und Skalenselektion von Strukturen auf ein vergleichbares Niveau zu heben, wie es für das diffusionsbegrenzte dendritische Wachstum erreicht ist.
DFG-Verfahren Sachbeihilfen
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung