Detailseite
Projekt Druckansicht

Arithmetic of superelliptic curves

Antragsteller Professor Dr. Ulf Kühn
Fachliche Zuordnung Mathematik
Förderung Förderung von 2011 bis 2016
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 203526262
 
Erstellungsjahr 2017

Zusammenfassung der Projektergebnisse

An overall aim of this project was to use superelliptic curves as a testing field for conjectures in arithmetic geometry. At first a mayor portion of this project has been devoted the study of arithmetic self intersection number ω^2-Ar of the relative dualizing sheaf of arithmetic surfaces. Jan-Steffen Müller and I were able to prove a general lower bound that depends only on data related to the bad reduction reduction. Moreover for particular superelliptic curves lower and upper bounds were calculated within the PhD thesis of Malte Moos, who was partially supported by this project. In the context of Beilinson conjectures it was proved by Vinzenz Busch in his PhD thesis that only for a small and computational inaccessible class of superelliptic curves enough elements in K2 can be obtained by the methods of Dejeu, Dokchitzer and Zagier. In the joint work with Müller some new ideas for finding integral elements of K2 of curves were introduced. Müller and I were able to derive consequences of the abc-conjecture to elliptic divisibility sequences. We weren’t able to find similar results for superelliptic curves.

Projektbezogene Publikationen (Auswahl)

  • A height inequality for rational points on elliptic curves implied by the abc-conjecture. Functiones et Approximatio Commentarii Mathematici , 52, 127–132 (2015)
    Kühn Ulf; Müller Jan Steffen
    (Siehe online unter https://doi.org/10.7169/facm/2015.52.1.10)
  • Abschätzungen von Arakelov Schnittzahlen für eine Familie von superelliptischen Kurven, Dissertation Universität Hamburg (2016)
    Moos Malte
  • Quadratic Chabauty: p-adic height pairings and integral points on hyperelliptic curves. J. Reine Angew. Math. 720, 51-79 (2016)
    Jennifer S. Balakrishnan, Amnon Besser, J. Steffen Müller
    (Siehe online unter https://doi.org/10.1515/crelle-2014-0048)
  • Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces. Trans. Amer. Math. Soc. 369, 1869– 1894 (2017)
    Kühn Ulf; Müller Jan Steffen
    (Siehe online unter https://doi.org/10.1090/tran/6787)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung