Project Details
Projekt Print View

Contribution of sex-specific epigenetic modifications to cardiac hypertrophy

Subject Area Cardiology, Angiology
Term from 2011 to 2015
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 60843499
 
Final Report Year 2017

Final Report Abstract

While it is well known that gender and age have a major impact on the onset and progression of various diseases in humans, most animal studies were carried out in male adolescent rodents only. To better characterize the influence of sex on the aging heart on a molecular basis, we compare strain, sex and age effects on H3K4me3 and gene expression in the rat. Heart left ventricle tissue was derived from Spontaneously Hypertensive Rats (SHR/Ola), a well-established model for left ventricular hypertrophy and hypertension, and Brown Norway rats (BN.Lx) both sexes each between 1.5 and 12 months of age. Overall, there was a strong positive correlation between H3K4me3 and gene expression patterns. While strain and age differences in H3K4me3 marks had larger fold changes and where mostly shared between experimental groups, autosomal sex differences were less observed and very variable between strains and ages. Most sex-specific histone methylation marks were detected in 12 mo old SHR with a majority of decreased marks in males. Associated genes such as Myh6 and Tnni3 were enriched in heart function and development gene ontology terms and 70 % showed a positive correlation with gene expression patterns on a single gene basis. Transcription factor binding site enrichment analysis revealed the heart transcription factors SRF and MEF2A as well as nuclear hormone receptors to be likely involved in this sex- and age-responsive regulation of H3K4me3 marks in SHR. Integrating cardiac H3K4me3 age and sex effects in two rat strains revealed a set of heart function related candidates which would not have been identified with gene expression data alone and might be involved in sex-specific adaptations related to left ventricular hypertrophy.

Publications

  • A transacting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 467 (7314): 460-464 (2010)
    Heinig M., ..., Cook S.A.
    (See online at https://doi.org/10.1038/nature09386)
  • RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nature Medicine 18 (5): 766-773 (2012)
    Guo W.; Schafer S.; Greaser M.L.; Radke M.H.; Liss M.; Govindarajan T.; Maatz H.; Schulz H.; Lincoln S.E.; Parrish A.M.; Dauksaite V.; Vakeel P.; Klaassen S.; Gerull B.; Thierfelder L.; Regitz-Zagrosek V.; Hacker T.A.; Saupe K.W.; Dec G.W.; Ellinor P.T.; MacRae C.A.; Spallek B.; Fischer R.; Perrot A.; Ozcelik C.; Saar K.; Hubner N.; Gotthardt M.
    (See online at https://doi.org/10.1038/nm.2693)
  • Combined sequence-based and genetic mapping analysis of complex traits in outbred rats. Nature Genetics 45 (7): 767-775 (2013)
    Baud A., ..., Flint J.
    (See online at https://doi.org/10.1038/ng.2644)
  • Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell 154 (3): 691-703 (2013)
    Atanur S.S.; Diaz A.G.; Maratou K.; Sarkis A.; Rotival M.; Game L.; Tschannen M.R.; Kaisaki P.J.; Otto G.W.; John Ma M.C.; Keane T.M.; Hummel O.; Saar K.; Chen W.; Guryev V.; Gopalakrishnan K.; Garrett M.R.; Joe B.; Citterio L.; Bianchi G.; McBride M.; Dominiczak A.; Adams D.J.; Serikawa T.; Flicek P.; Cuppen E.; Hubner N.; Petretto E.; Gauguier D.; Kwitek A.; Jacob H.; Aitman T.J.
    (See online at https://doi.org/10.1016/j.cell.2013.06.040)
  • NA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. Journal of Clinical Investigation 124 (8): 3419-3430 (2014)
    Maatz H.; Jens M.; Liss M.; Schafer S.; Heinig M.; Kirchner M.; Adami E.; Rintisch C.; Dauksaite V.; Radke M.H.; Selbach M.; Barton P.J.R.; Cook S.A.; Rajewsky N.; Gotthardt M.; Landthaler M.; Hubner N.
    (See online at https://doi.org/10.1172/jci74523)
  • Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Research 24 (6): 942-953 (2014)
    Rintisch C.; Heinig M.; Bauerfeind A.; Schafer S.; Mieth C.; Patone G.; Hummel O.; Chen W.; Cook S.; Cuppen E.; Colome-Tatche M.; Johannes F.; Jansen R.C.; Neil H.; Werner M.;Pravenec M.; Vingron M.; Hubner N.
    (See online at https://doi.org/10.1101/gr.169029.113)
  • Alternative splicing signatures in RNA-seq data: percent spliced in (PSI). Current Protocols in Human Genetics 87: 11.16.1-11.16.14 (2015)
    Schafer S.; Miao K.; Benson C.C.; Heinig M.; Cook S.A.; Hubner N.
    (See online at https://doi.org/10.1002/0471142905.hg1116s87)
  • Translational regulation shapes the molecular landscape of complex disease phenotypes. Nature Communications 6: 7200 (2015)
    Schafer S.; Adami E.; Heinig M.; Costa Rodrigues K.E.; Kreuchwig F.; Silhavy J.; van Heesch S.; Simaite D.; Rajewsky N.; Cuppen E.; Pravenec M.; Vingron M.; Cook S.A.; Hubner N.
    (See online at https://doi.org/10.1038/ncomms8200)
  • Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Science Translational Medicine 7 (270): 270ra6 (2015)
    Roberts A.M.; Ware J.S.; Herman D.S.; Schafer S.; Baksi J.; Bick A.G.; Buchan R.J.; Walsh R.; John S.; Wilkinson S.; Mazzarotto F.; Felkin L.E.; Gong S.; MacArthur J.A.L.; Cunningham F.; Flannick J.; Gabriel S.B.; Altshuler D.M.; Macdonald P.S.; Heinig M.; Keogh A.M.; Hayward C.S.; Banner N.R.; Pennell D.J.; O'Regan D.P.; San T.R.; de Marvao A.; Dawes T.J.W.; Gulati A.; Birks E.J.; Yacoub M.H.; Radke M.; Gotthardt M.; Wilson J.G.; O'Donnell C.J.; Prasad S.K.; Barton P.J.R.; Fatkin D.; Hubner N.; Seidman J.G.; Seidman C.E.; Cook S.A.
    (See online at https://doi.org/10.1126/scitranslmed.3010134)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung