Detailseite
Projekt Druckansicht

Zirkadiane Uhr und Anpassung an abiotischen Stress in Gerste

Mitantragstellerinnen / Mitantragsteller Professorin Dr. Rachel Green; Professor Dr. Marwan Haddad
Fachliche Zuordnung Genetik und Genomik der Pflanzen
Förderung Förderung von 2011 bis 2014
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 206837439
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

The circadian clock is an internal time-keeping mechanism that anticipates daily and seasonal changes in the environment. The prevalence of circadian rhythms in all domains of life suggests that circadian clocks provide an adaptive advantage for organisms and the circadian clock has been proposed as a key target for crop improvement. However, the effect of the clock on growth, yield and stress adaptation of major cereal crops are not well understood. The important cereal crop barley represents an ideal model to study the effect of the clock on adaptation to different environments, because the barley gene pool harbors large genetic variation and wild and landrace barley accessions grow in stress-prone areas. The overall objectives of the proposed project were to elucidate the adaptive significance of variation in the circadian clock in barley and 2) to gain a mechanistic understanding of the barley circadian clock and its interrelationship with growth and abiotic stress. Specifically, we proposed to 1) screen a wild and a landrace barley collection for variation in clock parameters and link this to eco-geographic conditions at the location of origin and 2) use identified clock variants to define output traits of the clock and input pathways into the clock by testing the plasticity of the clock in response to abiotic stresses. Using a high-throughput system to measure circadian rhythmicity based on changes in fluorescence we found that wild and landrace barley displayed wide variation in circadian parameters. In addition, the period time in wild and landrace barley genotypes was correlated to temperature at the site of origin, suggesting that circadian rhythms are under natural selection. Further we could demonstrate that the clock is plastic under abiotic stresses and displays changes in the period and amplitude. Clock mutants with a short circadian period were early flowering and had higher spike number and overall yield in rainfed field environments making the clock an interesting target for breeding in Mediterranean environments. Based on global transcriptome analyses we could show that about one third of the barley transcriptome is circadian controlled, while changes in the clock do not have a strong impact on transcript oscillations under day-night conditions. While Arabidopsis clock mutants are compromised in growth, we found that the clock does not affect biomass accumulation in barley. This is presumably because depletion of the major storage carbohydrate sucrose is not clock controlled while the degradation of starch, the major storage sugar in Arabidopsis is. Taken together our collaborative efforts have demonstrated that there is wide circadian variation in barley and this variation is presumably adaptive. While barley clock components are conserved between Arabidopsis and barley and also one third of the global transcriptome is under circadian control, output traits differ. Barley clock mutants are not obviously impaired in growth. Clock mutants show early flowering and improved yield under stress-conditions and are therefore valuable genetic material for breeding barley adapted to stress-prone environments.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung