Detailseite
Projekt Druckansicht

Regionale Modellierung der Auswirkungen des Klimawandels auf Weizen unter besonderer Berücksichtigung von Hitze- und Trockenstress und erhöhter CO2-Konzentration

Fachliche Zuordnung Pflanzenbau, Pflanzenernährung, Agrartechnik
Förderung Förderung von 2012 bis 2016
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 210331701
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

The project contributed to a better understanding and modeling of (i) crop responses to heat and drought, (ii) the effect of input and output data aggregation on heat and drought effects simulated at regional scale and (iii) the impact of potential adaptation measures to climate change such as changed sowing dates, cultivar change or the use of irrigation. The improved process and impact understanding was used to develop new model components which were applied to simulate effects of heat and drought on winter wheat across Germany. Gridded model input data at different aggregation levels required for these analyses were developed and made available to the research community. The key results of the project are: • The sensitivity of winter wheat yields to heat stress is lower than suggested by previous research. Effects of drought are stronger than effects of heat for the climatic conditions found in Germany. This has been confirmed for Europe very recently. • Heat and drought are closely linked due to the process of canopy cooling by transpiration. The modeling of effects of crop heat stress was considerably improved by extending crop models with components to simulate canopy temperature. • The development phase around anthesis is the phase in which wheat is most sensitive to heat for the climatic conditions found in Germany. Adaptation measures to climate change should focus on reducing the exposure to heat and drought in particular of this development phase. • The use of aggregated climate and soil input data has little effect on the mean and median of yield losses by heat and drought simulated for Germany. This suggests that results of models applied at the large scale can be considered as robust. High resolution input data are necessary to study the spatial and temporal variability of heat and drought effects, in particular for regions with heterogeneous topography. • The spatial resolution of climate input data required to constrain the error in simulated yields can be approximated by analyzing the spatial heterogeneity in topography. Further research is required to investigate the effects of increasing CO2 concentration on crop heat and drought stress and to test the effects of different model structure on simulated heat and drought effects. In addition, it needs to be tested whether the findings can be generalized across crop species or across other climatic zones.

Projektbezogene Publikationen (Auswahl)

  • 2014. Impact of heat stress on crop yield—on the importance of considering canopy temperature. Environmental Research Letters 9, 044012
    Siebert, S., F. Ewert, E. Eyshi Rezaei, H. Kage, R. Graß
    (Siehe online unter https://doi.org/10.1088/1748-9326/9/4/044012)
  • 2015. Demand for multiscale weather data for regional crop modeling. Agricultural and Forest Meteorology 200, 156-171
    Zhao, G., S. Siebert, A. Enders, E. Eyshi Rezaei, C. Yan, F. Ewert
    (Siehe online unter https://doi.org/10.1016/j.agrformet.2014.09.026)
  • 2015. Heat stress in cereals: mechanisms and modeling. European Journal of Agronomy 64, 98-113
    Eyshi Rezaei, E., H. Webber, T. Gaiser, J. Naab, F. Ewert
    (Siehe online unter https://doi.org/10.1016/j.eja.2014.10.003)
  • 2015. Impact of data resolution on heat and drought stress simulated for winter wheat in Germany. European Journal of Agronomy 65, 69-82
    Eyshi Rezaei, E., S. Siebert, F. Ewert
    (Siehe online unter https://doi.org/10.1016/j.eja.2015.02.003)
  • 2015. Intensity of heat stress in winter wheat— phenology compensates for the adverse effect of global warming. Environmental Research Letters 10, 024012
    Eyshi Rezaei, E., S. Siebert, F. Ewert
    (Siehe online unter https://doi.org/10.1088/1748-9326/10/2/024012)
  • 2015. Rising temperatures reduce global wheat production. Nature Climate Change 5, 143-147
    Asseng, S., F. Ewert, P. Martre, R.P. Rotter, D.B. Lobell, D. Cammarano, B.A. Kimball, M.J. Ottman, G.W. Wall, J.W. White, M.P. Reynolds, P.D. Alderman, P.V.V. Prasad, P.K. Aggarwal, J. Anothai, B. Basso, C. Biernath, A.J. Challinor, G. De Sanctis, J. Doltra, E. Fereres, M. Garcia-Vila, S. Gayler, G. Hoogenboom, L.A. Hunt, R.C. Izaurralde, M. Jabloun, C.D. Jones, K.C. Kersebaum, A.K. Koehler, C. Muller, S. Naresh Kumar, C. Nendel, G. O/'Leary, J.E. Olesen, T. Palosuo, E. Priesack, E. Eyshi Rezaei, A.C. Ruane, M.A. Semenov, I. Shcherbak, C. Stockle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, P.J. Thorburn, K. Waha, E. Wang, D. Wallach, J. Wolf, Z. Zhao, Y. Zhu
    (Siehe online unter https://doi.org/10.1038/NCLIMATE2470)
  • 2016. Impact of spatial soil and climate input data aggregation on regional yield simulations. PLoS One 11, e0151782
    Hoffmann, H., G. Zhao, S. Asseng, M. Bindi, C. Biernath, J. Constantin, E. Coucheney, R. Dechow, L. Doro, H. Eckersten, T. Gaiser, B. Grosz, F. Heinlein, B.T. Kassie, K.-C. Kersebaum, C. Klein, M. Kuhnert, E. Lewan, M. Moriondo, C. Nendel, E. Priesack, H. Raynal, P.P. Roggero, R.P. Rötter, S. Siebert, X. Specka, F. Tao, E. Teixeira, G. Trombi, D. Wallach, L. Weihermüller, J. Yeluripati, F. Ewert
    (Siehe online unter https://doi.org/10.1371/journal.pone.0151782)
  • 2016. Simulating canopy temperature for modelling heat stress in cereals. Environmental Modelling & Software 77, 143-155
    Webber, H., F. Ewert, B.A. Kimball, S. Siebert, J.W. White, G.W. Wall, M.J. Ottman, D.N.A. Trawally, T. Gaiser
    (Siehe online unter https://doi.org/10.1016/j.envsoft.2015.12.003)
  • 2017. Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Research 202, 21-35
    Webber, H., P. Martre, S. Asseng, B. Kimball, J. White, M. Ottman, G.W. Wall., G. De Sanctis, J. Doltra, R. Grant, B. Kassie, A. Maiorano, J.E. Olesen, D. Ripoche, E. Eyshi Rezaei, M.A. Semenov, P. Stratonovitch, F. Ewert
    (Siehe online unter https://doi.org/10.1016/j.fcr.2015.10.009)
  • 2017. Climate and management interaction cause diverse crop phenology trends. Agricultural and Forest Meteorology 233, 55-70
    Eyshi Rezaei, E., S. Siebert, F. Ewert
    (Siehe online unter https://doi.org/10.1016/j.agrformet.2016.11.003)
  • 2018. Climate change effect on wheat phenology depends on cultivar change. Scientific Reports 8, 4891, 1-10
    Eyshi Rezaei, E., S. Siebert, H. Hüging, F. Ewert
    (Siehe online unter https://doi.org/10.1038/s41598-018-23101-2)
  • 2018. Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions. Field Crops Research 216, 75-88
    Webber, H., J. W. White, B. A. Kimball, F. Ewert, S. Asseng, E. Eyshi Rezaei, P. J. Pinter, Jr., J. L. Hatfield, M. P. Reynolds, B. Ababaei, M. Bindi, J. Doltra, R. Ferrise, H. Kage, B. T. Kassie, K. C. Kersebaum, A. Luig, J. E. Olesen, M. A. Semenov, P. Stratonovitch, A. M. Ratjen, R. L. LaMorte, S. W. Leavitt, D. J. Hunsaker, G. W. Wall, and P. Martre
    (Siehe online unter https://doi.org/10.1016/j.fcr.2017.11.005)
  • 2018. Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Research 217, 93-103
    Eyshi Rezaei, E., S. Siebert, R. Manderscheid, J. Müller, A. Mahrookashani, B. Ehrenpfordt, J. Haensch, H. J. Weigel, F. Ewert
    (Siehe online unter https://doi.org/10.1016/j.fcr.2017.12.015)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung