Detailseite
Projekt Druckansicht

Molekulare Determinanten der Wirtsspezifität von Mais-, Reis-und Mango-pathogenen Arten der Gattung Fusarium

Antragstellerinnen / Antragsteller Dr. Ulrich Güldener; Professorin Dr. Bettina Tudzynski
Fachliche Zuordnung Pflanzenzüchtung, Pflanzenpathologie
Förderung Förderung von 2011 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 210882736
 
Erstellungsjahr 2017

Zusammenfassung der Projektergebnisse

Our study presents high-quality genome sequences of three additional members of the Asian clade of the FFC, namely F. mangiferae, and two strains of F. proliferatum. We compared the genomes of these strains to those of F. fujikuroi and F. verticillioides, which belong to the Asian and African-clades of the FFC, respectively, and to the closely related but non-FFC species F. oxysporum. We explored the genetic potential of these fusaria to produce SMs, including phytohormones, and tested their ability to produce SMs both in vitro and in planta. Despite the high level of sequence conservation among species, there are several differences in SM gene content and production that have the potential to contribute to host specificity. Transcriptomic analysis of maize tissue individually infected with the five Fusarium isolates revealed SM biosynthetic genes that are upregulated in all the strains and others that were upregulated only in one strain. Among the most remarkable findings are the following: Despite the high level of similarity among the genomes of the sequenced FFC strains, there are SM biosynthetic genes that are unique to each species and may be at least partially responsible for the differences in host specificity or pathogenic versus endophytic life style. Members of the FFC are unique among ascomycetes in their genetic potential to produce three classes of phytohormones: GAs, CKs and auxins. However, the ability to produce these hormones is species- and even strainspecific. In particular, there are fundamental differences between the two F. proliferatum strains in their ability to produce GAs and auxins. These differences in phytohormone biosynthesis may be at least partially responsible for the pathogenic versus endophytic life style. F. mangiferae is able to induce the accumulation of plant CKs and probably to cause mango malformation by this strategy.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung