Detailseite
Projekt Druckansicht

Impact of Alternative Substrates on Methane, Methanol, and Chloromethane Metabolism of Methylotrophs in Forest Soils

Fachliche Zuordnung Mikrobielle Ökologie und Angewandte Mikrobiologie
Förderung Förderung von 2012 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 212127456
 
Methylotrophic microbes in forest soils govern to a substantial degree the global exchange of methane, methanol, and chloromethane of terrestrial ecosystems with the atmosphere. Methane is a greenhouse gas. Methanol and chloromethane affect ozone formation. Forest soil methylotrophs utilise these compounds as energy and carbon sources. However, ambient concentrations of methane, methanol, and chloromethane are such low that it is unlikely that their utilisation allows for sufficient energy conservation of methylotrophs. Thus, forest soil methylotrophs likely utilise alternative substrates that are abundant in forest soil, such as hydrolysis products of cellulose and hemicellulose, anaerobic degradation products of organic matter, nalkanes from plant waxes, and soluble metabolites of lignin. The proposed project will resolve trophic strategies of methylotrophs that utilise one-carbon atmospheric gases, and thrive in forest soils. Soil samples of two temperate beech stands will be investigated (Steigerwald, Solling). The proposed experiments will allow for identification of active methylotrophs and their metabolic pathways at in situ-relevant substrate concentrations using state of the art stable isotope probing techniques, cultivation, metatranscriptomics and –proteomics, and substrate consumption kinetics. Furthermore, experiments will reveal insights into the impact of soil microbial communities on the yet insufficiently resolved global cycles of methanol and chloromethane.
DFG-Verfahren Sachbeihilfen
Beteiligte Person Professor Dr. Harold L. Drake
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung