Detailseite
Projekt Druckansicht

Resistives Schalten in HfO2-basierten Metall-Isolator-Metall Strukturen für nicht-flüchtigen Speicher

Fachliche Zuordnung Herstellung und Eigenschaften von Funktionsmaterialien
Förderung Förderung von 2012 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 218953208
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

The most important result of the project is the establishment of a unified model for the switching behavior of valence change based devices using HfO2 as dielectric and TiN as the active electrode. In metal-insulator-metal stacks where only the oxygen stoichiometry of the dielectric was changed, all reported switching modes could be reproduced. Based on the achieved experimental correlation of switching modes and material states, a unified model could be suggested, taking into account electrode field driven oxygen ions, thermophoresis due to temperature gradients and diffusion due to concentration gradients. A similar model could be applied for the closely related system of TaO-based devices. In addition, oxygen deficient samples allow to stabilize quantum point contacts where the conductance is given by one or a few conductance quanta observable at room-temperature. Other important results from a more technology point of view include the role of residual carbon inside the sample which may form under certain conditions carbon-carbon and carbon-hafnium bonds that cannot be broken and lead to irreparable device failure as well as the use of nano-guided filament approaches by nano-patterned electrode techniques to improve RRAM variability challenges. Future directions are direct visualization of conducting filaments by transmission electron microscopy which will allow the ultimate clarification of the nanoscopic switching mechanism, and the investigation of the devices with respect to neuromorphic functionality for which controlled gradual transitions between multiple conducting states are required.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung