Detailseite
Projekt Druckansicht

Biomineralogie und Extreme Biomimetik

Fachliche Zuordnung Herstellung und Eigenschaften von Funktionsmaterialien
Biomaterialien
Förderung Förderung von 2012 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 221568524
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

Psychrophilic calcification occurs in both unicellular pro- and eukaryotic organisms as well as in multicellular animals like bryozoans, corals, molluscs, crustaceans, echinoderms, and fish. They are able to synthetize their calcium carbonate and/or calcium phosphate-containing skeletons under frigid environmental conditions.There is a lack of knowledge about mechanisms of calcification at temperatures near the freezing point. Low temperatures lead to exponential decreases in chemical reaction rates. Consequently, the thermodynamic aspects of biomineralization in the hard tissues of psychrophilic biocalcifiers are of principal scientific interest. For the first time selected hard tissues (teeth, bones, otoliths and scales) from diverse ice fish species have been studies with respect to identification of naturally occurring calcium phosphate phases. These biological materials have been characterized by broad variety of modern bioanalytical and physico-chemical techniques in order to determine their morphology, composition, and structure. Our experiments show with strong evidence the occurrence of crystalline hydroxyapatite within the mineralized tissues of icefish species like C. gunnari and D. mawsoni. This suggests the existence of naturally occurring mechanisms for calcification and the developing of crystalline phases at temperatures near the freezing point of sea water. During the project time, we succeed in development of novel setup for the production calcium phosphate-based composites using selected organic matrices under temperature of minus 2°C. For the first time the formation of dicalciumphosphatedihydrate (DCPD) under extreme biomimetics conditions using ice fish collagen in vitro has been confirmed.

Projektbezogene Publikationen (Auswahl)

  • (2016) Marine Sponges: Chemicobiological and Biomedical Applications. Springer India, pp. 381
    Pallela R., Ehrlich H. (Eds.)
    (Siehe online unter https://doi.org/10.1007/978-81-322-2794-6)
  • (2016) Multiphase biomineralization: enigmatic invasive siliceous diatoms produce crystalline calcite. Advanced Functional Materials 26:2503–2510
    Ehrlich H., Motylenko M., Sundareshwar P.V., Ereskovsky A.V., Zglobicka I., Noga T., Plocinski T., Tsurkan M., Wyroba E., Suski S., Bilski H., Wysokowski M., Stöcker H., Makarova A., Vyalikh D., Walter J., Molodtsov S.L., Bazhenov V.V., Petrenko I., Langer E., Richter A., Niederschlag E., Pisarek M., Springer A., Gelinsky M., Rafaja D., Witkowski A., Meyer D.C., Jesionowski T., Kurzydlowski K.J.
    (Siehe online unter https://doi.org/10.1002/adfm.201504891)
  • (2016) Supercontinuum generation in naturally occurring glass sponges spicules. Advanced Optical Materials 4(10):1608–1613
    Ehrlich H., Maldonado M., Parker A.R., Kulchin Y.N., Schilling J., Köhler B., Skrzypczak U., Simon P., Reiswig H.M., Tsurkan M., Brunner E., Voznesenskiy S.S., Bezverbny A.V., Golik S.S., Nagorny I.G., Vyalikh D.V., Makarova A.A., Molodtsov S.L., Kummer K., Mertig M., Erler C., Kurek D.V., Bazhenov V.V., Natalio F., Kovalev A.E., Gorb S.N., Stelling A.L., Heitmann J., Born R., Meyer D.C., Tabachnick K.R.
    (Siehe online unter https://doi.org/10.1002/adom.201600454)
  • (2017) Extreme Biomimetics. Springer International Publishing, Cham, pp. 276
    Ehrlich H. (Ed.)
    (Siehe online unter https://doi.org/10.1007/978-3-319-45340-8)
  • (2017) On chemistry of γ–chitin. Carbohydrate Polymers 176:177–186
    Kaya M., Mutajba M., Ehrlich H., Salaberria A.M., Baran T., Amemiya C.T., Galli R., Akyuz L., Sargin I., Labidi J.
    (Siehe online unter https://doi.org/10.1016/j.carbpol.2017.08.076)
  • (2018) Biosilica as source for inspiration in biological materials science. American Mineralogist 103(5):665–691
    Wysokowski M., Jesionowski T., Ehrlich H.
    (Siehe online unter https://doi.org/10.2138/am-2018-6429)
  • (2018) Collagens of poriferan origin. Marine Drugs 16:79
    Ehrlich H., Wysokowski M., Żółtowska–Aksamitowska S., Petrenko I., Jesionowski T.
    (Siehe online unter https://doi.org/10.3390/md16030079)
  • (2018) Extreme biomimetics: carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide (IV) and its electrochemical applications. Nano Research 11(8):4199–4214
    Szatkowski T., Kopczyński K., Motylenko M., Borrmann H., Mania B., Graś M., Lota G., Bazhenov V.V., Rafaja D., Roth F., Weise J., Langer E., Wysokowski M., Żółtowska– Aksamitowska S., Petrenko I., Molodtsov S.L., Hubálková J., Aneziris C.G., Joseph Y., Stelling A.L., Ehrlich H., Jesionowski T.
    (Siehe online unter https://doi.org/10.1007/s12274-018-2008-x)
  • (2018) Marine spongin: naturally prefabricated 3D scaffold–based biomaterial. Marine Drugs 16:88
    Jesionowski T., Norman M., Żółtowska–Aksamitowska S., Petrenko I., Yoseph Y., Ehrlich H.
    (Siehe online unter https://doi.org/10.3390/md16030088)
  • (2018) Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities. Ultrasonics Sonochemistry 45:189–196
    Sobhani–Nasab A., Rahimi–Nasrabadi M., Reza Naderi H., Poirmohamadien V., Ahmadi F., Reza Ganjali M., Ehrlich H.
    (Siehe online unter https://doi.org/10.1016/j.ultsonch.2018.03.011)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung