Detailseite
Projekt Druckansicht

Lösbarkeit und Komplexität im Turingmaschinenmodell von numerischen Problemen über Funktionenräumen

Fachliche Zuordnung Theoretische Informatik
Förderung Förderung von 2006 bis 2009
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 22442428
 
Erstellungsjahr 2009

Zusammenfassung der Projektergebnisse

Keine Zusammenfassung vorhanden

Projektbezogene Publikationen (Auswahl)

  • Computability of solutions of operator equations. Math. Logic Quart., 53:326–344, 2007
    V. Bosserhoff
  • A tutorial on computable analysis. In B. Cooper, B. Löwe, and A. Sorbi, editors, New Computational Paradigms, Changing Conceptions of What is Computable, New York, 2008. Springer
    V. Brattka, P. Hertling, and K. Weihrauch
  • Are unbounded linear operators computable on the average for Gaussian measures? J. Complexity, 24(4):477–491, 2008
    V. Bosserhoff
  • Computability theoretic properties of the entropy of gap shifts. Fundamenta Informaticae, 83(1–2):144–157, 2008
    P. Hertling and C. Spandl
  • Computable Functional Analysis and Probabilistic Computability. Dissertation, Universität der Bundeswehr München, 2008
    V. Bosserhoff
  • Notions of probabilistic computability on represented spaces. J.UCS, 14(6):956–995, 2008
    V. Bosserhoff
  • On the relationship between filter spaces and weak limit spaces. Journal of Universal Computer Science, 14(6):996–1015, 2008
    M. Schröder
  • Reliable Implementation of Real Number Algorithms: Theory and Practice. International Seminar, Dagstuhl Castle, Germany, January 8–13, 2006. Revised Papers., volume 5045 of Lecture Notes in Computer Science, Berlin, 2008. Springer
    P. Hertling, C. M. Hoffmann, W. Luther, and N. Revol
  • Shifts with decidable language and non-computable entropy. Discrete Mathematics and Theoretical Computer Science, 10(3):75–94, 2008
    P. Hertling and C. Spandl
  • The bit-complexity of finding nearly optimal quadrature rules for weighted integration. J.UCS, 14(6):938–955, 2008
    V. Bosserhoff
  • An effective Tietze-Urysohn theorem for QCB-spaces. Journal of Universal Computer Science, 15(6):1317–1336, 2009
    M. Schröder
  • On the effective existence of Schauder bases. J.UCS, 15(6):1145-1161, 2009
    V. Bosserhoff
  • The sequential topology on NNN is not regular. Math. Struct in Comp. Sci., 19(5):943–957, 2009
    M. Schröder
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung