Project Details
Projekt Print View

h-projectively equivalent metrics

Subject Area Mathematics
Term from 2012 to 2018
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 226608726
 
Final Report Year 2018

Final Report Abstract

C-projectively equivalent metrics and c-projective transformations is a natural concept in the Kähler geometry: is was introduced in the 50th in the context of a natural structures and natural transformations of Kähler manifolds, and then was independently re-invented and re-introduced in the 90th the context of ina tegrable system (under the name “Kähler-Liouville metrics”) and in 2000th as generalization of the so-called Calabi construction (under the name “Hamiltonian 2-forms”). The circles of methods that were used, and also the goals, were also completely different. The main idea of the project was to combine both the methods and the goals. This approach appeared to be very productive. The most important results were the local description of c-projectively equivalent metrics and the proof of the Yano-Obata conjecture, in the Riemannian case on complete manifolds and in the case of any signature on compact manifolds. Both problems were explicitly asked in 1950th-1970th and were one of the main goals of the research in the direction.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung