Project Details
Combinatorial Markov chains: Structure and asymptotics
Applicant
Professor Dr. Rudolf Grübel
Subject Area
Mathematics
Term
from 2012 to 2016
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 227377809
Final Report Year
2016
Final Report Abstract
Die Verwendung der Doob’schen Randwerttheorie für Markov-Ketten bei der Analyse von zufällig wachsenden diskreten Strukturen wurde weiter vorangetrieben und insbesondere zur Analyse von Algorithmen mit zufälligem Input benutzt. Hierdurch motiviert wurden auch strukturelle Aspekte herausgearbeitet. Des Weiteren ergab sich eine Verbindung zur Theorie der austauschbaren Verteilungen, die auf eine ausbaufähige Interaktion mit der Ergodentheorie hindeutet.
Publications
- Kombinatorische Markov-Ketten. Math. Semesterberichte 60 (2013), 185-215
Rudolf Grubel
- Search trees: Metric aspects and strong limit theorems. Annals of Applied Probability 24 (2014), 1269-1297
Rudolf Grubel
(See online at https://doi.org/10.1214/13-AAP948) - Persisting randomness in randomly growing discrete structures: graphs and search trees. Discrete Mathematics & Theoretical Computer Science 18 (2015), 23pp.
Rudolf Grubel
- Random recursive trees: A boundary theory approach. Electronic Journal of Probability 20 (2015), 22pp.
Rudolf Grubel, I. Michailow
(See online at https://doi.org/10.1214/EJP.v20-3832) - A boundary theory approach to de Finetti’s theorem. 2016
Rudolf Grubel, Julian Gerstenberg und Klaas Hagemann
- Leader election: A Markov chain approach. Mathematica Applicanda 44 (2016), 113-134
Rudolf Grubel, Klaas Hagemann
(See online at https://doi.org/10.14708/ma.v44i1.1141) - Doob-Martin boundary of Rémy’s tree growth chain. Annals of Probability, Volume 45, Number 1 (2017), 225-277
Rudolf Grubel, Steven N. Evans und Anton Wakolbinger
(See online at https://doi.org/10.1214/16-AOP1112)