Detailseite
Projekt Druckansicht

Schätzung nichtlinearer Effekte in latenten Variablenmodellen bei nicht-normalverteilten Daten

Antragsteller Professor Dr. Augustin Kelava, seit 8/2016
Fachliche Zuordnung Persönlichkeitspsychologie, Klinische und Medizinische Psychologie, Methoden
Förderung Förderung von 2012 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 230533471
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

Im Projekt wurden drei Verfahrensweisen zur Analyse nichtlinearer Zusammenhänge bei heterogenen Daten entwickelt. Erstens wurde der sog. NDLC-SEM Ansatz entwickelt, der es erlaubt, intensive längsschnittliche Daten (wie sie z.B. durch tragbare technische Gerätschaften erhoben werden können) zu analysieren. Dabei ist eine simultane Betrachtung inter-individueller Differenzen, intra-individueller Veränderungen, zeitabhängiger Kovariaten, unbeobachter latenter Heterogenität und die Berücksichtigung flexibler Zusammenhänge (anhand von Splines) möglich. Mit diesen Eigenschaften ist der NDLC-SEM Ansatz eine Generalisierung aktueller prominenter dynamischer Zeitreihenmodelle (z.B. der DLCA und DSEM Ansätze) und für eine große Bandbreite an Anwendungen geeignet, in denen längsschnittliche Daten erhoben werden. Zweitens wurde das erste frequentistische nichtparametrische Strukturgleichungsmodell für nichtlineare Zusammenhänge entwickelt, welches ohne Verteilungsannahmen auskommt und eine flexible Schätzung der Zusammenhänge erlaubt. Merkmalsschätzungen kommen so ohne die üblichen starken starke Annahmen aus (z.B., dass ein Merkmal normalverteilt sein muss). Das Verfahren ermöglicht es, sog. Factor-Scores zu schätzen, deren Momente über bessere Eigenschaften als vergleichbare Scores herkömmliche Verfahrensweisen verfügen. Ferner wird der nichtlineare Zusammenhang konsistent geschätzt. Drittens wurden nichtlineare Item Response Modelle entwickelt, die synergistische Beziehungen von Merkmalen (z.B. Kompetenzen) erlauben. Die entwickelten Modelle lassen sich in Kontexten anwenden, in denen z.B. das komplexe Zusammenspiel mehrerer Merkmale die Itemantwort (z.B. in Leistungstests) determiniert. Zusätzlich werden nichtlineare Item Response Modelle in Large-Scale-Kontexten der Bildungsforschung anwendbar, in denen typischerweise Schachtelungen von Daten (Schüler in Schulen) auftauchen. Als ein an die Entwicklungsarbeiten anknüpfendes Ergebnis wurde ein neues adaptives Lasso-Verfahren entwickelt, welches eine sparsame Parameterschätzung und die Selektion von Variablen erlaubt (z.B. in Kontexten, in denen viele Kovariaten oder hochparametrische Probleme vorliegen). Etwaige Anwendungen lassen sich z.B. im Maschinellen Lernen finden. Darüber hinaus flossen die entwickelten Verfahrensweisen auch in andere angrenzende Gebiete ein. Z.B. lassen sich differenzielle Effekte von Interventionen unter Berücksichtung der neuen Modelle besser eingrenzen. So lässt sich genauer abschätzen, wenn z.B. Behandlungsmaßnahmen (der Psychologie oder Medizin) nur in einem spezfischen Merkmalsbereich wirken. Zukünftige Forschung findet im Projekt sehr gute Anküpfungspunkte für die Entwicklung von Schätzverfahrensweisen, die sich sowohl im frequentistischen als auch in Bayesschen Bereich einordnen lassen. Dazu gehören die Weiterentwicklung frequentistischer Expectation Maximization Algorithmen und die Entwicklung Bayesscher Penalisierungsansätze.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung