Detailseite
Projekt Druckansicht

Dimorphe Früchte, Samen und Keimlinge als Anpassung an abiotischen Stress bei wechselhaften Umweltbedingungen

Fachliche Zuordnung Pflanzenphysiologie
Förderung Förderung von 2014 bis 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 243732593
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

The aim of the SeedAdapt consortium project was to elucidate the molecular mechanisms of fruit/seed-related traits that evolved in annual plant species as adaptations to cope with abiotic stresses in harsh environments and upon climate change. The network SeedAdapt, a collaboration between six European partners with diverse and complementary expertise, investigated this interesting phenomenon by studying Aethionema arabicum, a small plant originating from the Mediterranean region and the Middle East. The species belongs to the family of crucifers (Brassicaceae or cabbage family) and is therefore also related to Arabidopsis, the famous model plant for genetic and molecular research. The network revealed that, in contrast to Arabidopsis which is a model for monomorphic plants, the SeedAdapt species Ae. arabicum is a dimorphic plant. It forms two morphologically distinct types of fruits and seeds on the same plant. It is proposed that this is a "don't put all eggs in one basket" risk management strategy to survive unpredictable environmental conditions and variable weather. The seed and fruit types differ with respect to several anatomical, biomechanical, physiological, and molecular features. The total number of fruits and the ratio between the two types depend on the developmental scheme of the flower branches, and change in response to different environmental conditions experienced during flowering. In a large experiment, we mimicked different environmental stress conditions by applying different temperatures during flowering. This resulted in altered fruit and seed numbers and different ratios between the two types. Interestingly, not only the numbers and ratios were altered, but also the intrinsic properties of the produced fruits and seeds. We further found for one of the dimorphic seed types that the fruit coats encasing the seeds confer dormancy and block the germination. Our work into the underpinning molecular mechanisms demonstrated that the interaction between environment and fruit/seed type affected the hormone contents, epigenetic regulation and gene expression patterns (transcriptomes). The availability of the Ae. arabicum genome facilitated our comparative investigation of abiotic stressrelated epigenomes, hormonomes, and transcriptomes, thereby making it an exciting time to study the remarkable plant diversity by moving beyond Arabidopsis and all other monomorphic plants. The large molecular datasets generated and all findings from this research are being published OpenAccess to make them widely available. The SeedAdapt consortium work has advanced our knowledge about plant-climate interactions and demonstrated that Ae. arabicum provides an excellent model system for studying the role of seed/fruit bet-hedging to survive unpredictable environments.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung