Detailseite
Willmore Flächen in Riemannschen Mannigfaltigkeiten
Antragsteller
Professor Dr. Tobias Lamm; Professor Dr. Jan Metzger
Fachliche Zuordnung
Mathematik
Förderung
Förderung von 2013 bis 2020
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 245965278
Erstellungsjahr
2020
Zusammenfassung der Projektergebnisse
Keine Zusammenfassung vorhanden
Projektbezogene Publikationen (Auswahl)
-
Optimal rigidity estimates for nearly umbilical surfaces in arbitrary codimension. Geom. Funct. Anal., 24(6):2029–2062, 2014
T. Lamm and R. M. Schätzle
-
Rigidity and non-rigidity results for conformal immersions. Adv. Math., 281:1178–1201, 2015
T. Lamm and R. M. Schätzle
-
A note on Willmore minimizing Klein bottles in Euclidean space. Adv. Math., 319:67–75, 2017
J. Hirsch and E. Mäder-Baumdicker
-
Existence of minimizing Willmore Klein bottles in Euclidean four-space. Geom. Topol., 21(4):2485–2526, 2017
P. Breuning, J. Hirsch, and E. Mäder-Baumdicker
-
Isoperimetric structure of asymptotically conical manifolds. J. Differential Geom., 105(1):1–19, 2017
O. Chodosh, M. Eichmair, and A. Volkmann
-
Conformal Willmore tori in R4. J. Reine Angew. Math., 742:281–301, 2018
T. Lamm and R. M. Schätzle
-
Local foliation of manifolds by surfaces of willmore type. 2018. Ann. Inst. Fourier (Grenoble)
T. Lamm, J. Metzger, and F. Schulze
-
Concentration of small hawking type surfaces. 2019
A. Friedrich
-
Minimizers of Generalized Willmore Energies and Applications in General Relativity. PhD thesis, Universität Potsdam, September 2019
A. Friedrich
-
Minimizers of generalized willmore functionals. 2019
A. Friedrich
-
Refined position estimates for surfaces of willmore type in riemannian manifolds. 2019
J. Metzger