Detailseite
Projekt Druckansicht

Die Funktion von Calcium-aktivierten Kaliumkanälen in neuronalen Mitochondrien

Antragstellerin Dr. Amalia Dolga
Fachliche Zuordnung Molekulare Biologie und Physiologie von Nerven- und Gliazellen
Pharmakologie
Zellbiologie
Förderung Förderung von 2014 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 249667320
 
Erstellungsjahr 2017

Zusammenfassung der Projektergebnisse

Despite the markedly reduced resources, the work of this project has addressed the key questions about the function of SK2 channels in the cell death pathways, in particular in models of mitochondrial oxidative stress and ER stress. The distribution of SK channels in neuronal cells has been established by cellular fractionation and mitochondrial/ER purification. To achieve this, successful collaborations with different research groups (Prof. H. Zischka, Prof. F. Perocchi, Ludwig-Maximilians-Universität Munchen) have been established. This project allowed the implementation of a pure semi-automated method of mitochondrial isolation from either brain tissue or cell cultures. This method provided reproducible and very good quality of mitochondria, as measured by high-resolution respirometry or Seahorse measurements. In addition, several methods of mitochondrial calcium uptake were established and implemented in the lab. The successful implementation of mitochondrial calcium uptake were performed in close collaboration with Prof. M. Bünemann (University of Marburg) and Prof. F. Perocchi (Ludwig-Maximilians-Universität Munchen). The specificity of SK channel modulators and their effects on neuronal activity was achieved in collaboration with Prof. N. Decher (University of Marburg). This project shed light on the neuroprotective potential of SK channel activation and how these channels are affecting mitochondrial respiration, mitochondrial calcium uptake, and mitochondrial superoxide formation. We have demonstrated that by either opening of SK channels or by enrichment of SK2 channels in mitochondria, neuronal survival is preserved in conditions of oxidative stress.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung