Detailseite
Projekt Druckansicht

Evolutionsgleichungen mit p,q-Wachstum

Fachliche Zuordnung Mathematik
Förderung Förderung von 2013 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 250001814
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

Im Rahmen des Projekts wurde die Frage nach der Existenz und Regularität von Lösungen parabolischer Gleichungen und Systemen mit p, q-Wachstum eingehend untersucht. Die Besonderheit derartiger Gleichungen liegt darin, dass die Elliptizitäts- und Wachstumsexponenten der Koeffizienten unterschiedlich sind. Im stationären Setting wurden derartige Probleme bereits eingehend untersucht. Im Gegensatz dazu war im zeitabhängigen parabolischen Setting kaum etwas bekannt. In diesem Projekt gelang es, wichtige Erkenntnisse auf diesem Gebiet erzielen. Insbesondere wurden die im Projektantrag beschriebenen Problemstellungen fast vollständig gelöst. Auch einige weiterführende Fragestellungen konnten bereits behandelt werden. Als sehr wichtiges Instrument stellte sich der Begriff der Variationslösungen dar, der von Lichnewsky und Temam im Kontext der zeitabhängigen parametrischen Minimalflächengleichung eingeführt wurde. Dieser Lösungsbegriff erlaubt es, auf Methoden der Variationsrechnung zurückzugreifen und somit eine flexiblere Beweistechnik für die Existenz von Lösungen parabolischer Probleme zu entwickeln. Viele unserer Resultate können unter deutlich schwächeren Voraussetzungen bewiesen werden, als dies zuvor möglich war (z.B. exponentielles Wachstum des Integranden, nicht-zylindrische Gebiete, in der Zeit unstetige Hindernisse, ...). Im Rahmen des Projekts wurde wie geplant eine Dissertation erfolgreich abgeschlossen. Sie wurde mit dem Hans Stegbuchner-Preis 2016 des Fachbereichs Mathematik der Universitat Salzburg ausgezeichnet.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung