Detailseite
Projekt Druckansicht

Untersuchung des Energiemetabolismus humaner Basalganglien-Neurone von Patienten mit Leigh Syndrom mittels iPS-Zell Technologie

Fachliche Zuordnung Molekulare und zelluläre Neurologie und Neuropathologie
Förderung Förderung von 2014 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 252129655
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

In our project, we have demonstrated that the technology of iPSC reprogramming can be used to investigate rare neurological diseases such as Leigh syndrome (LS) that are currently incurable. We have generated innovative patient-derived neural model systems and used them to gain new knowledge regarding the mechanisms underlying the neuronal pathology associated with LS. We identified targets of intervention and discovered that PDE5 inhibitors may be considered for the treatment of LS caused by MT-ATP6 mutations. We were positively surprised that neural progenitor cells (NPCs) do predominantly rely on mitochondrial metabolism and thus exhibit aberrant functionality in the context of the mitochondrial disease LS. On the mechanistic side, these findings implicate a neurogenesis defect as the basic pathogenetic mechanism of LS. On the translational side, the data support the use of NPCs as an effective model system for LS to conduct high-throughput drug discovery and drug repurposing studies. We believe that our findings are important for not only to the scientific community in the field of stem cells and mitochondria, but may also be worth sharing with the patient community and the general public. LS and mitochondrial diseases are rare orphan disorders that suffer from a lack of therapeutic options and often from a lack of interest from the general public. Affected patients and related families may be interested to hear about our scientific advances that may soon bring potential treatment options to some of the affected individuals.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung