Detailseite
Projekt Druckansicht

Diagnose-übergreifende Rekonstruktion psychotischer Störungen durch multimodale genetisch-neuronale Signaturen

Antragsteller Emanuel Schwarz, Ph.D.
Fachliche Zuordnung Biologische Psychiatrie
Epidemiologie und Medizinische Biometrie/Statistik
Förderung Förderung von 2014 bis 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 255466206
 
Erstellungsjahr 2022

Zusammenfassung der Projektergebnisse

In this reporting period, we continued with our extensive development of computational tools for the machine learning analysis of high-dimensional data, and deployed these methods to gain insight into the biology of schizophrenia. Using biologically-informed machine learning, we identified a reproducible DNA methylation signature in the blood and brain of patients with schizophrenia. We demonstrated that this signature predicted inter-individual differences in the brain-functional connectivity between the dorsolateral-prefrontal cortex (DLPFC) and the hippocampus, a robust neural intermediate phenotype of schizophrenia. Furthermore, we demonstrated that predictions from this signature were not changed in unaffected, first degree relatives, not associated with genetic risk for schizophrenia, and not altered in relevant differential diagnoses. This indicates that the identified DNA methylation signature likely reflected a schizophrenia-specific exposure to environmental risk, and was not a secondary consequence of genetic predisposition. In parallel, we implemented a computational pipeline to characterize the coordination of DNA methylation between gene-pairs at the genome wide level. Such coordination may be disturbed by environmental risk exposure, with downstream effects on gene expression and, potentially, illness susceptibility. We were able to identify a large-scale, reproducible DNA-methylation coordination network, which was particularly dense (i.e. strongly connected) in biological processes that included synaptic function. We observed that DNA methylation in these processes along the coordinated dimension was significantly altered in the DLPFC of patients with schizophrenia. Furthermore, the variance of this coordinated, synaptic methylation showed a reproducible, age-depended increase in variance. This may suggest that the underlying regulatory system is more tightly controlled in younger individuals, and it is interesting to hypothesize that environmental risk exposure may have a more pronounced functional consequence during such age periods. In line with this hypothesis, we observed that coordinated synaptic methylation showed an age dependent association with schizophrenia-relevant, brain-functional connectivity. This provides the groundwork for interesting follow-up analyses of how risk exposure mediates susceptibility via changes in DNA methylation. Finally, we expanded the development of multitask learning approaches to allow their application on geographically distributed databases, and made the developed framework publicly available.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung