Detailseite
Projekt Druckansicht

Herstellung von Nanopartikel-basierten inhalativen Antibiotika zur Behandlung von Mukoviszidose-assoziierten Biofilmen und Infektionen und in vivo Studien im Rattenmodell.

Fachliche Zuordnung Pharmazie
Pneumologie,Thoraxchirurgie
Förderung Förderung von 2014 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 256755002
 
Erstellungsjahr 2020

Zusammenfassung der Projektergebnisse

In the first funding period, we developed und optimized, by systematic variation of the formulation process, different micro- and nanoparticular formulations of polyester polymers in which different antibiotics with anti-pseudomonal activity were stably and efficiently encapsulated. Particles were extensively characterized regarding their physicochemical characteristics and storage forms were developed. In in vitro assays, we were able to demonstrate that non-encapsulated tobramycin exhibits no activity against biofilms of Pseudomonas aeruginosa and Burkholderia cepacia biofilms. In contrast, nanoparticle encapsulation restored the activity of tobramycin against these biofilms. The effectiveness of the PEG-PLGA-encapsulated tobramycin was 1000fold higher against the biofilms compared to the free drug or a blend of both components; thereby, the effective concentration of encapsulated tobramycin was even below concentrations measured during tobramycin i.v. treatment. Moreover, biofilms of B. cepacia, which is intrinsically resistant to tobramycin, could be efficiently eradicated. Both examples indicate an improved or even restored efficacy of the PEG-PLGA particles in vitro. In the second funding period, the in vitro results were transferred to a rodent model for lung infections to investigate the safety and efficacy of inhaled nanoparticle-encapsulated tobramycin in vivo. The aims were (i) the clarification of the underlying mechanism of the improved/restored efficacy of encapsulated tobramycin, (ii) the formulation of the micro- and nanoparticles applicable for inhalation and the confirmation of sufficient pulmonary deposit of the drug, (iii) the characterization of the safety profile in vivo, and (iv) the proof-of-concept of the superior efficacy of the inhaled tobramycin-encapsulated formulation compared to pure inhaled tobramycin.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung