Detailseite
Projekt Druckansicht

Autonomes und effizient skalierbares Deep Learning

Fachliche Zuordnung Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing
Förderung Förderung von 2014 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 260197604
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

In summary, the project was not only successful in taking important steps towards more autonomous systems, that are able to learn from as little data as possible in a mathematically grounded fashion. But it also importantly contributed to spread light on a severe general issue in semi-supervised learning, that is the need to take validation data into account when comparing systems that learn on few labeled data. Furthermore, novel developments on efficient scaling enabled the developed NeSi networks to be applicable at realistic scales and with many parameters. Furthermore, the scalability methods applied gave rise to novel and more broadly applicable learning algorithms.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung