Detailseite
Projekt Druckansicht

Aufklärung von Anregungsmechanismen, die zu homogenen und filamentären Moden eines dielektrisch behindert betriebenen Plasmajets führen

Fachliche Zuordnung Analytische Chemie
Förderung Förderung von 2015 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 262732688
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

In order to get a reproducible dielectric barrier discharge a square wave generator with slopes steeper than 400 ns / 1000 V was developed and applied to generate the plasma jet. In this case it was not possible to generate any filamentary discharge when He was applied as plasma gas. Therefore, the change of the divergence of the plasma jet during the change of the modes needed not to be investigated. By time and spatially resolved measurements the temporal and spatially change of the plasma could be evaluated. It could be demonstrated that the plasma consists of at three different stages. The plasma jet as well as the early plasma can be observed at nearly the same time at different positions and only in the positive half cycle: the plasma jet outside the discharge capillary and the early plasma in between the two electrodes. After these plasmas the so called coincident plasma will be ignited in between the electrodes. The propagation of the early plasma and that of the coincident plasma are counter propagating and the duration of these plasmas are less than 1 µs when a half period of the cycle is 25 µs. The early plasma as well as the plasma jet is appropriate to fulfill soft ionization while the coincident plasma can be used as dissociative plasma. After the coincident plasma a so called after glow stats between the electrodes. The model system Ar/ammonia for He/N2 was changed into Ar/propane. The heights of the ionization level of propane is comparable with that of ammonia but more appropriate for steel surfaces. It could be demonstrated that the voltage needed to ignite the Ar plasma will reduced to the half when traces of propane are mixed into Ar. The spatial and temporal behavior of the emission signals are comparable with that of the He/N2 system.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung