Detailseite
Projekt Druckansicht

Funktionale Bedeutung der Transmembranhelices und des Turrets für das Gating von Kaliumkanälen

Fachliche Zuordnung Biochemie und Biophysik der Pflanzen
Förderung Förderung von 2014 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 265445268
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

The project has produced interesting results regarding: a) A so far unknown mechanism for a cytosolic gate in K+ channels that particularly stands out because of its unusual simplicity. b) A novel concept of regulation of gating by voltage. In the absence of a dedicated voltage-sensor domain, the extracellular turret is apparently able to confer voltagesensitivity. c) The possibility to determined site-specific ion occupation in the pore from electrophysiological data, which enabled the distinction of several candidate permeation models from MD simulations and the identification of a distinct sensor binding site in the selectivity filter. Additionally, the project generated incentive for new projects regarding the role of inner-helical hydrogen bonds for channel gating and the mechanisms of selectivity filter gating.

Projektbezogene Publikationen (Auswahl)

  • 2015. How to resolve microsecond current fluctuations in single ion channels: The power of beta distributions. Channels. 9: 262–280
    Schroeder, I.
    (Siehe online unter https://doi.org/10.1080/19336950.2015.1083660)
  • 2016. A simple recipe for setting up the flux equations of cyclic and linear reaction schemes of ion transport with a high number of states: the arrow scheme. Channels. 10: 1–20
    Hansen, U.-P., O. Rauh, and I. Schroeder
    (Siehe online unter https://doi.org/10.1080/19336950.2015.1120391)
  • 2017. Extended beta distributions open the access to fast gating in bilayer experiments-assigning the voltage-dependent gating to the selectivity filter. FEBS Lett. 591: 3850–3860
    Rauh, O., U.-P. Hansen, S. Mach, A.J.W. Hartel, K.L. Shepard, G. Thiel, and I. Schroeder
    (Siehe online unter https://doi.org/10.1002/1873-3468.12898)
  • 2017. Identification of intra-helical bifurcated H-bonds as a new type of gate in K+ channels. J. Am. Chem. Soc. 139: 7494–7503
    Rauh, O., M. Urban, L.M. Henkes, T. Winterstein, T. Greiner, J.L. Van Etten, A. Moroni, S.M. Kast, G. Thiel, and I. Schroeder
    (Siehe online unter https://doi.org/10.1021/jacs.7b01158)
  • 2018. Molecular explanations for gating in simple model K+ channels. PhD thesis, Tech. Univ. Darmstadt
    Rauh, O.
  • 2018. Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. J. Gen. Physiol. 150: 637–646
    Winterstein, L.-M., K. Kukovetz, O. Rauh, D.L. Turman, C.J. Braun, A. Moroni, I. Schroeder, and G. Thiel
    (Siehe online unter https://doi.org/10.1085/jgp.201711904)
  • 2018. Single-channel recordings of RyR1 at microsecond resolution in CMOS-suspended membranes. Proc. Natl. Acad. Sci. 115: E1789–E1798
    Hartel, A.J.W., P. Ong, I. Schroeder, M.H. Giese, S. Shekar, O.B. Clarke, R. Zalk, A.R. Marks, W.A. Hendrickson, and K.L. Shepard
    (Siehe online unter https://doi.org/10.1073/pnas.1712313115)
  • 2018. Site-specific ion occupation in the selectivity filter causes voltage-dependent gating in a viral K+ channel. Sci. Rep. 8: 10406
    Rauh, O., U.P. Hansen, D.D. Scheub, G. Thiel, and I. Schroeder
    (Siehe online unter https://doi.org/10.1038/s41598-018-28751-w)
  • 2019. High bandwidth approaches in nanopore and ion channel recordings - A tutorial review. Anal. Chim. Acta. 1061: 13–27
    Andreas Hartel, S. Shekar, P. Ong, I. Schroeder, G. Thiel, and K.L. Shepard
    (Siehe online unter https://doi.org/10.1016/j.aca.2019.01.034)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung