Detailseite
Projekt Druckansicht

Entwicklung verlässlicher und effizienter Verfahren zur Optimierung des Betriebspunkts verfahrenstechnischer Prozesse

Fachliche Zuordnung Chemische und Thermische Verfahrenstechnik
Automatisierungstechnik, Mechatronik, Regelungssysteme, Intelligente Technische Systeme, Robotik
Förderung Förderung von 2015 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 271280750
 
Erstellungsjahr 2020

Zusammenfassung der Projektergebnisse

The development of a strategy for efficient combination of modifier adaptation with model adaptation in iterative real-time optimization was presented. We demonstrated a parameter selection procedure based on a local sensitivity analysis as suggested in the initial proposal of the project. The method selects the most influential parameters from a given set in order to improve the performance of the proposed approach. Finally, the MAWQA method for robust iterative real-time optimization was combined with parameter estimation with EMA. The main objective of the project was to develop a reliable and efficient RTO scheme that is robust with respect to the structural deficiencies of the plant model and in the presence of measurement noise. It was illustrated using a fed-batch reactor as a case study that the proposed methods ensure the convergence to the true plant optimum and achieve fast convergence.

Projektbezogene Publikationen (Auswahl)

  • (2017). Effective model adaptation in iterative RTO, In: Computer Aided Chemical Engineering 40, 1717-1722
    Ahmad, A., Gao, W., Engell, S.
    (Siehe online unter https://doi.org/10.1016/B978-0-444-63965-3.50288-9)
  • (2018). Enforcing Model Adequacy in Real-Time Optimization via Dedicated Parameter Adaptation, IFAC-Papers On Line 51(18), 49-54
    Ahmad, A., Singhal, M., Gao, W., Bonvin, D., Engell, S.
    (Siehe online unter https://doi.org/10.1016/j.ifacol.2018.09.246)
  • (2018). Modifier Adaptation with Model Adaptation in Iterative Real-Time Optimization. In: Computer Aided Chemical Engineering 44, 691-696
    Ahmad, A., Gao, W., Engell, S.
    (Siehe online unter https://doi.org/10.1016/B978-0-444-64241-7.50110-5)
  • (2019) Model adaptation with quadratic approximation in iterative real-time optimization, in: 2019 22nd International Conference on Process Control (PC19), IEEE, 250–255
    Ahmad, A., Mukkula, A.R.G., Engell, S.
    (Siehe online unter https://doi.org/10.1109/PC.2019.8815377)
  • (2019). A Study of Model Adaptation in Iterative Real-Time Optimization of Processes with Uncertainties, Computers & Chemical Engineering 122, 218-227
    Ahmad, A., Gao, W., Engell, S.
    (Siehe online unter https://doi.org/10.1016/j.compchemeng.2018.08.001)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung