Detailseite
Projekt Druckansicht

Molekulare Charakterisierung von äußeren Dyneinarm-Defekten bei der Primären Ciliären Dyskinesie (PCD)

Fachliche Zuordnung Kinder- und Jugendmedizin
Förderung Förderung von 2006 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 27604571
 
Erstellungsjahr 2017

Zusammenfassung der Projektergebnisse

Primary ciliary dyskinesia (PCD) is a genetic disorder caused by inherited defects of motile ciliary function. The genetically, functionally, and ultrastructurally heterogenous disease affects approximately one in 20,000 individuals at birth. The lack of coordinated ciliary movement causes insufficient muco-ciliary clearance of upper airway compartments such as Eustachian tube and sinuses, and lower airways resulting in chronic inflammatory damage of the lung. Dysfunction of node monocilia located at the embryonic node is associated with randomization of left-right body asymmetry. Therefore half of PCD patients exhibit situs inversus (complete mirror image of organ position). The association of PCD and situs inversus is also referred to as Kartagener’s syndrome (OMIM #244400). At the beginning of the project in 2006, only a few projects focused on rare lung disease in children worldwide. However, early diagnosis of PCD is important for prevention of permanent lung damage. Diagnosis was (and still is) often delayed because diagnostic workup is complicated. At the beginning of our project diagnosis relied so far on a combination of clinical suspicion and confirmatory test such as ultrastructural (electron microscopy) and/or functional (direct observation by light microscopy) analysis of respiratory cilia. As a screening test, measurement of nasal nitric oxide (NO) was suggested but only available in few centers word wide. In addition, in 2006, only three genes had been linked to recessive PCD, all encode for outer dynein arm proteins: DNAI1, DNAH11 and DNAH5. Therefore, further analysis was urgently needed to improve knowledge about human motile cell biology and to improve patient care and patient´s quality of life. The identification and characterization of further genes which are responsible for ODA defects in humans was important for the genetic diagnosis and genetic counseling especially because some functional defects resulting in PCD can be easily overlooked by standard procedures (e.g. DNAH11: dysfunctional cilia, but normal TEM pattern). Using candidate gene approaches, SNP analysis and whole exome sequencing analyses we identified novel genes (list available at: https://campus.unimuenster.de/en/pcd/research/primary-ciliary-dyskinesia-pcd/genetics-of-pcd/) encoding for ODA components or influence preassembly of ODA complexes, resulting in the first description of preassembly of ODA complexes in humans. In addition, we identified novel genes responsible for ODA targeting to and docking onto the ciliary axoneme. We also identified and described the diverse subcellular localization of DNAH11 in different cell types finally explaining the finding of hyperkinetic and stiff beat pattern in respiratory cell cilia and immotile cilia found at the left-right organizer (node), leading to left-right axis developmental defects. We also generated and validated antibodies targeting ODA components and associated proteins. These are now in use not only in our laboratory to characterize the ciliary composition in humans and mouse models not only for research purpose, but also for diagnostic purposes. With our analyses, we were also successful to characterize ciliary beat pattern abnormalities in respiratory cells and to assign beat pattern deviations to diverse genetic defects. This also not only improved knowledge about motile cilia biology, but also improved diagnostic methods used to diagnose PCD earlier than previously possible. In summary, this proposal resulted in the identification and characterization of several novel genes for PCD variants with structural and/or functional ODA defects, improvement of diagnostic procedures and patient care and in continuous publication in high ranking journals.

Projektbezogene Publikationen (Auswahl)

  • DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet. 83:547-58, 2008
    Loges NT, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, Kuhl H, Baktai G, Peterffy E, Chodhari R, Chung EM, Rutman A, O'Callaghan C, Blau H, Tiszlavicz L, Voelkel K, Witt M, Zietkiewicz E, Neesen J, Reinhardt R, Mitchison HM, Omran H
  • Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456:611-6, 2008
    Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, Zhang Q, Leblond G, O'Toole E, Hara C, Mizuno H, Kawano H, Fliegauf M, Yagi T, Koshida S, Miyawaki A, Zentgraf H, Seithe H, Reinhardt R, Watanabe Y, Kamiya R, Mitchell DR, Takeda H
  • Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet. 85:883-9, 2009
    Loges NT, Olbrich H, Becker-Heck A, Häffner K, Heer A, Reinhard C, Schmidts M, Kispert A, Zariwala MA, Leigh MW, Knowles MR, Zentgraf H, Seithe H, Nürnberg G, Nürnberg P, Reinhardt R, Omran H
  • CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet. 43(1):72-78, 2011
    Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, Belmont J, Beydon N, Billen F, Clément A, Clercx C, Coste A, Crosbie R, de Blic J, Deleuze S, Duquesnoy P, Escalier D, Escudier E, Fliegauf M, Horvath J, Hill K, Jorissen M, Just J, Kispert A, Lathrop M, Loges NT, Marthin JK, Momozawa Y, Montantin G, Nielsen KG, Olbrich H, Papon JF, Rayet I, Roger G, Schmidts M, Tenreiro H, Towbin JA, Zelenika D, Zentgraf H, Georges M, Lequarré AS, Katsanis N, Omran H, Amselem S
  • The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet. 43:79-84, 2011
    Becker-Heck A, Zohn IE, Okabe N, Pollock A, Lenhart KB, Sullivan-Brown J, McSheene J, Loges NT, Olbrich H, Haeffner K, Fliegauf M, Horvath J, Reinhardt R, Nielsen KG, Marthin JK, Baktai G, Anderson KV, Geisler R, Niswander L, Omran H, Burdine RD
  • CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 44:714-9, 2012
    Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi DA, Liu Y, Loges NT, Pathak N, Austin-Tse C, Sheridan E, Schmidts M, Olbrich H, Werner C, Häffner K, Hellman N, Chodhari R, Gupta A, Kramer-Zucker A, Olale F, Burdine RD, Schier AF, O'Callaghan C, Chung EM, Reinhardt R, Mitchison HM, King SM, Omran H, Drummond IA
    (Siehe online unter https://doi.org/10.1038/ng.2277)
  • Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet. 44:381-9, 2012
    Mitchison HM, Schmidts M, Loges NT, Freshour J, Dritsoula A, Hirst RA, O'Callaghan C, Blau H, Al Dabbagh M, Olbrich H, Beales PL, Yagi T, Mussaffi H, Chung EM, Omran H, Mitchell DR
    (Siehe online unter https://doi.org/10.1038/ng.1106)
  • ARMC4 Mutations Cause Primary Ciliary Dyskinesia with Randomization of Left/Right Body Asymmetry. Am J Hum Genet. 2013, 93(2):357-367
    Hjeij R, Lindstrand A, Francis R, Zariwala MA, Liu X, Li Y, Damerla R, Dougherty GW, Abouhamed M, Olbrich H, Loges NT, Pennekamp P, Davis EE, Carvalho CM, Pehlivan D, Werner C, Raidt J, Köhler G, Häffner K, Reyes-Mugica M, Lupski JR, Leigh MW, Rosenfeld M, Morgan LC, Knowles MR, Lo CW, Katsanis N, Omran H
    (Siehe online unter https://doi.org/10.1016/j.ajhg.2013.06.009)
  • DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet. 45:995-1003. 2013
    Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW, Tamayo JV, Shook B, Cantino M, Schwartz D, Jahnke C, Olbrich H, Werner C, Raidt J, Pennekamp P, Abouhamed M, Hjeij R, Köhler G, Griese M, Li Y, Lemke K, Klena N, Liu X, Gabriel G, Tobita K, Jaspers M, Morgan LC, Shapiro AJ, Letteboer SJ, Mans DA, Carson JL, Leigh MW, Wolf WE, Chen S, Lucas JS, Onoufriadis A, Plagnol V, Schmidts M, Boldt K; UK10K, Roepman R, Zariwala MA, Lo CW, Mitchison HM, Knowles MR, Burdine RD, Loturco JJ, Omran H
    (Siehe online unter https://doi.org/10.1038/ng.2707)
  • Mutations in SPAG1 Cause Primary Ciliary Dyskinesia Associated with Defective Outer and Inner Dynein Arms. Am J Hum Genet. 2013 93(4):711-720
    Knowles MR, Ostrowski LE, Loges NT, Hurd T, Leigh MW, Huang L, Wolf WE, Carson JL, Hazucha MJ, Yin W, Davis SD, Dell SD, Ferkol TW, Sagel SD, Olivier KN, Jahnke C, Olbrich H, Werner C, Raidt J, Wallmeier J, Pennekamp P, Dougherty GW, Hjeij R, Gee HY, Otto EA, Halbritter J, Chaki M, Diaz KA, Braun DA, Porath JD, Schueler M, Baktai G, Griese M, Turner EH, Lewis AP, Bamshad MJ, Nickerson DA, Hildebrandt F, Shendure J, Omran H, Zariwala MA
    (Siehe online unter https://doi.org/10.1016/j.ajhg.2013.07.025)
  • The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet. 45:262-268. 2013
    Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS, Loges NT, Pennekamp P, Lindberg S, Stenram U, Carlén B, Horak E, Köhler G, Nürnberg P, Nürnberg G, Porter ME, Omran H
    (Siehe online unter https://doi.org/10.1038/ng.2533)
  • CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am J Hum Genet. 2014; 95(3):257-74
    Hjeij R, Onoufriadis A, Watson CM, Slagle CE, Klena NT, Dougherty GW, Kurkowiak M, Loges T, Diggle CP, Morante NF, Gabriel GC, Lemke KL, Li Y, Pennekamp P, Menchen T, Konert F, Marthin JK, Mans DA, Letteboer SJ, Werner C, Burgoyne T, Westermann C, Rutman A, Carr IM, O'Callaghan C, Moya E, Chung EM; UK10K Consortium, Sheridan E, Nielsen KG, Roepman R, Bartscherer K, Burdine RD, Lo CW, Omran H, Mitchison HM
    (Siehe online unter https://doi.org/10.1016/j.ajhg.2014.08.005)
  • Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia. Eur Respir J. 2014;44(6):1579-88
    Raidt J, Wallmeier J, Hjeij R, Onnebrink JG, Pennekamp P, Loges NT, Olbrich H, Häffner K, Dougherty GW, Omran H, Werner C
    (Siehe online unter https://doi.org/10.1183/09031936.00052014)
  • Ciliary function and motor protein composition of human fallopian tubes. Hum Reprod. 2015 Dec;30(12):2871-80
    Raidt J, Werner C, Menchen T, Dougherty GW, Olbrich H, Loges NT, Schmitz R, Pennekamp P, Omran H
    (Siehe online unter https://doi.org/10.1093/humrep/dev227)
  • DNAH11 Localization in the Proximal Region of Respiratory Cilia Defines Distinct Outer Dynein Arm Complexes. Am J Respir Cell Mol Biol. 2016 Aug;55(2):213-24
    Dougherty GW, Loges NT, Klinkenbusch JA, Olbrich H, Pennekamp P, Menchen T, Raidt J, Wallmeier J, Werner C, Westermann C, Ruckert C, Mirra V, Hjeij R, Memari Y, Durbin R, Kolb-Kokocinski A, Praveen K, Kashef MA, Kashef S, Eghtedari F, Häffner K, Valmari P, Baktai G, Aviram M, Bentur L, Amirav I, Davis EE, Katsanis N, Brueckner M, Shaposhnykov A, Pigino, Dworniczak B, Omran H
    (Siehe online unter https://doi.org/10.1165/rcmb.2015-0353OC)
  • TTC25 Deficiency Results in Defects of the Outer Dynein Arm Docking Machinery and Primary Ciliary Dyskinesia with Left-Right Body Asymmetry Randomization. Am J Hum Genet. 2016 Aug 4;99(2):460-9
    Wallmeier J, Shiratori H, Dougherty GW, Edelbusch C, Hjeij R, Loges NT, Menchen T, Olbrich H, Pennekamp P, Raidt J, Werner C, Minegishi K, Shinohara K, Asai Y, Takaoka K, Lee C, Griese M, Memari Y, Durbin R, Kolb-Kokocinski A, Sauer S, Wallingford JB, Hamada H, Omran H
    (Siehe online unter https://doi.org/10.1016/j.ajhg.2016.06.014)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung