Detailseite
Projekt Druckansicht

Gekoppelte organisch-anorganische Nanostrukturen: Von maßgeschneiderten elektronischen Eigenschaften über selektiven Ladungstransport zu optoelektronischen Bauteilen

Fachliche Zuordnung Physikalische Chemie von Festkörpern und Oberflächen, Materialcharakterisierung
Förderung Förderung von 2016 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 282208125
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

This project has investigated the structure and charge-carrier transport properties of hybrid nanomaterials that arise from combining semiconducting PbS nanocrystals with conjugated organic molecules into hybrid thin films. It was demonstrated that arrays of the same PbS nanocrystal can exhibit p- or n-type transport behavior depending on the type of the conjugated organic molecule attached to the surface. This could be attributed to the electronic structure at the NC/molecule interface, which was tailored to be either resonant with the hole (p-type) or electron states (n-type). With this novel concept for tuning the electric properties of nanocrystal arrays, it is now possible to design more complex devices, such as p-n diodes, on the basis of the same nanocrystals by merely altering the surface molecule. A persistent challenge in this regard is the fabrication of homogeneous, fully closed thin films of such hybrid nanomaterials on millimeter-sized areas to allow for the fabrication of vertically stacked devices with several layers of different materials without electrical shortcuts. A key advantage of the approach demonstrated in this project is the ability to design nanocrystal arrays with long-range order and tailored electrical properties. This was enabled by the relatively large size of the molecules, which is crucial for maintaining long-range structural order. To this end, the project has pioneered the development of a ligand exchange procedure at the liquid-gas interface for superior structural homogeneity in the final hybrid nanomaterial. The insights from a variety of structural studies have greatly deepened our understanding of the formation and structure of conductive PbS nanocrystal ensembles with long-range order, so-called superlattices. This has included the demonstration of the specific advantages of X-ray scattering at liquid interfaces as well as the merits of X-ray diffraction with a nanofocused beam. Overall, the project has established that coupled organic-inorganic nanocrystals exhibit large structural coherence and tailored electronic interfaces from which new optoelectronic effects emerge, such as photon upconversion or dye-sensitized photodetection.

Projektbezogene Publikationen (Auswahl)

  • Quantifying angular correlations between the atomic lattice and superlattice of nanocrystals assembled with directional linking. Nano Lett. 2017, 17, 3511–3517
    Zaluzhnyy, I.A.; Kurta, R.P.; André, A.; Gorobtsov, O.Y.; Rose, M.; Skopintsev, P.; Besedin, I.; Zozulya, A.V.; Sprung, M.; Schreiber, F.; Vartanyants, I.A.; and Scheele, M.
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.7b00584)
  • Structure, transport and photoconductance of PbS quantum dot monolayers functionalized with a Copper Phthalocyanine derivative. Chem. Commun., 2017, 53, 1700-1703
    André, A.; Theurer, C.; Lauth, J.; Maiti, S.; Hodas, M.; Samadi Khoshkhoo, M.; Kinge, S.; Meixner, A.J.; Schreiber, F.;Siebbeles, L.D.A.; Braun, K.; Scheele, M.
    (Siehe online unter https://doi.org/10.1039/C6CC07878H)
  • Surface Functionalization with Cu Tetraaminophthalocyanine Enables Efficient Charge Transport in Indium Tin Oxide Nanocrystal Thin-Films. ACS Appl. Mater. Interfaces 2017, 9, 14197–14206
    Samadi Khoshkhoo, M.; Maiti, S.; Schreiber, F.; Chassé, T.; Scheele, M.
    (Siehe online unter https://doi.org/10.1039/C6CC07878H)
  • Ultrafast Charge Transfer and Upconversion in Zn β-Tetraaminophthalocyanine Functionalized PbS Nanostructures Probed by Transient Absorption Spectroscopy. Angew. Chem. Int. Ed. 2017, 56, 14061
    Lauth, J.; Grimaldi, G.; Kinge, S.; Houtepen, A.J.; Siebbeles, L.D.A.; Scheele, M.
    (Siehe online unter https://doi.org/10.1002/ange.201707443)
  • Chemiresistive Properties of a Novel Composite Comprised of ITO-Nanoparticles and 1,8-Diaminooctane. Proceedings 2018, 2, 1516
    Samadi Khoshkhoo, M.; Rabe, S.; Scheele, M.; Joseph, Y.
    (Siehe online unter https://doi.org/10.3390/proceedings2131516)
  • Correlated, Dual-Beam Optical Gating in Coupled Organic-Inorganic Nanostructures. Angew. Chem. Int. Ed. 2018, 57, 11559-11563
    Wurst, K. M.; Bender, Markus; Lauth, J.; Maiti, S.; Chassé, T.; Meixner, A.; Siebbeles, L.D.A.; Bunz, U.H.F.; Braun, K.; Scheele, M.
    (Siehe online unter https://doi.org/10.1002/ange.201803452)
  • Electron-Conducting PbS Nanocrystal Superlattices with Long-Range Order Enabled by Terthiophene Molecular Linkers. ACS Appl. Mater. Interfaces 2018, 10, 24708-24714
    André, A.; Weber, M.; Wurst, K. M.; Maiti, S.; Schreiber, F.; Scheele, M.
    (Siehe online unter https://doi.org/10.1021/acsami.8b06044)
  • Electronically Coupled, Two-Dimensional Assembly of Cu1.1S Nanodiscs for Selective Vapor Sensing Applications. J. Phys. Chem. C 2018, 122, 23720-23727
    Maiti, S.; Maiti, S.; Joseph, Y.; Wolf, A.; Brütting, W.; Dorfs, D.; Schreiber, F.; Scheele, M.
    (Siehe online unter https://doi.org/10.1021/acs.jpcc.8b05276)
  • Evidence for photo-switchable carrier mobilities in blends of PbS nancrystals and photochromic dithienylcyclopentene derivatives. Z. Phys. Chem. 2018, 232, 1369-1381
    Schedel, C.; Peisert, H.; Chassé, T.; Scheele, M.
    (Siehe online unter https://doi.org/10.1515/zpch-2018-1128)
  • Monitoring Self-Assembly and Ligand Exchange of PbS Nanocrystal Superlattices at the Liquid/Air Interface in Real Time. J. Phys. Chem. Lett. 2018, 9, 739−744
    Maiti, S.; André, A.; Banerjee, R.; Hagenlocher, J.; Konovalov, O.; Schreiber, F.; Scheele, M.
    (Siehe online unter https://doi.org/10.1021/acs.jpclett.7b03278)
  • Tunable Charge Transport in Hybrid Superlattices of Indium Tin Oxide Nanocrystals and Metal Phthalocyanines - Towards Sensing Applications. Adv. Mater. Interfaces 2018, 5, 1701623
    Samadi Khoshkhoo, M.; Joseph, Y.; Maiti, S.; Schreiber, F.; Chassé, T.; Scheele, M.
    (Siehe online unter https://doi.org/10.1002/admi.201701623)
  • Angular x-ray cross-correlation analysis (AXCCA): Basic concepts and recent applications to soft matter and nanomaterials. Materials 2019, 12, 3464
    Zaluzhnyy, I.A.; Kurta, R.P.; Scheele, M.; Schreiber, F.; Ostrovskii, B.I.; Vartanyants, I.A.
    (Siehe online unter https://doi.org/10.3390/ma12213464)
  • Dye- Sensitized Ternary Copper Chalcogenide Nanocrystals: Optoelectronic Properties, Air Stability and Photosensitivity. Chem. Mater. 2019, 31, 2443–2449
    Maiti, S.; Maiti, S.; Khan, A. H.; Wolf, A.; Dorfs, D.; Moreels, I.; Schreiber, F.; Scheele, M.
    (Siehe online unter https://doi.org/10.1021/acs.chemmater.8b05108)
  • Insitu Formation of Electronically Coupled Superlattice of Cu1.1S Nanodiscs at the Liquid/Air Interface. Chem. Commun. 2019, 55, 4805-4808
    Maiti, S.; Maiti, S.; Maier, A.; Banerjee, R.; Chen, S.; Murphy, B. M.; Scheele, M.; Schreiber, F.
    (Siehe online unter https://doi.org/10.1039/C9CC01758E)
  • Revealing Grain Boundaries and Defect Formation in Nanocrystal Superlattices by Nanodiffraction. Small 2019, 15, 1904954
    Mukharamova, N.; Lapkin, D.; Zaluzhnyy, I.A.; André, A.; Lazarev, S.; Kim, Y.Y.; Sprung, M.; Kurta, R.P.; Schreiber, F.; Vartanyants, I.A.; Scheele, M.
    (Siehe online unter https://doi.org/10.1002/smll.201904954)
  • Understanding the Formation of Conductive Mesocrystalline Superlattices with Cubic PbS Nanocrystals at the Liquid/Air Interface. J. Phys. Chem. C 2019, 123, 1519–1526
    Maiti, S.; Maiti, S.; Maier, A.; Hagenlocher, J.; Chumakov, A.; Schreiber, F.; Scheele, M.
    (Siehe online unter https://doi.org/10.1021/acs.jpcc.8b11518)
  • A Neutron Scattering Perspective on the Structure, Softness and Dynamics of the Ligand Shell of PbS Nanocrystals in Solution. Chem. Sci. 2020, 11, 8875
    Seydel, T.; Koza, M. M.; Matsarskaia, O.; André, A.; Maiti, S.; Weber, M.; Schweins, R.; Prévost, S.; Schreiber, F.; Scheele, M.
    (Siehe online unter https://doi.org/10.1039/D0SC02636K)
  • Coupled Organic-Inorganic Nanostructures with Mixed Organic Linker Molecules. ACS Appl. Mater. Interfaces 2021, 13, 37483–37493
    Grassl, F.; Ullrich, A.; Mansour, A.; Abdalbaqi, S.; Koch, N.; Opitz, A.; Scheele, M.; Brütting, W.
    (Siehe online unter https://doi.org/10.1021/acsami.1c08614)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung