Detailseite
Projekt Druckansicht

Paarweiser visueller Vergleich von gerichteten, azyklischen Graphen: Entwicklung von Gestaltungsrichtlinien basierend auf Mensch-Maschine Interaktion

Fachliche Zuordnung Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing
Förderung Förderung von 2016 bis 2019
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 283588368
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

Graphs have become an indispensable model for representing data in a multitude of domains, including biology, business, financing, and social network analysis. In many of these domains humans are repeatedly confronted with the need to visually compare node-link representations of graphs in order to identify their commonalities or differences. Yet, despite its importance little is known about how much visual differences affect users’ perception of graph similarity. As a result, more a systematic investigation addressing this issue is necessary. This was the goal of this project. We specifically concentrated on visual comparison of directed acyclic graphs. Within the project, we developed methodology for conducting visual comparison studies. We assessed the advantages and disadvantages of crowdsourcing and laboratory studies, developed tools for the generation and selection of study datasets, for conducting studies and for measuring perceived graph similarity. We conducted studies identifying factors, which influence human judgment of graph similarity for three cases: small unlabeled graphs, small labeled graphs and larger unlabeled graphs. Our results indicate that both graph-theoretic and visual factors influence the similarity judgment. On the graph-theoretic side, the number of levels, number of nodes and the labels of central nodes are important. On the visual side, graph shape and white space seem to play an important role. The review of guidelines for network visualization and the results of our studies served as a basis for conceptual work: review of visualization guidelines, the characterization of data and tasks in visual graph comparison and influences on mental models. Moreover, it opens new research questions: the development of novel visual comparison techniques that adhere to the identified human factors.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung