Detailseite
Projekt Druckansicht

Neue Funktionen der mitochondrialen Präsequenzprozessierungsmaschinerie in physiologischen und pathophysiologischen Prozessen

Fachliche Zuordnung Biochemie
Zellbiologie
Förderung Förderung von 2016 bis 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 289336601
 
Erstellungsjahr 2022

Zusammenfassung der Projektergebnisse

The aim of this Emmy-Noether project was the comprehensive analysis of the mitochondrial presequence processing machinery under physiological conditions and the investigation of specific pathophysiological aspects as mutations in several subunits have been associated with severe human diseases. Presequences are targeting signals that mediate the import of mitochondrial precursor proteins into the organelle after their synthesis on cytosolic ribosomes. The presequence processing machinery consists of processing proteases that cleave the presequence (MPP, Icp55, Oct1/MIP) and presequence peptidases (Cym1/PreP, Ste23, Prd1) that degrade the presequence. In my Emmy-Noether group we uncovered the peptidases Ste23 and Prd1 and their function in presequence peptide degradation. We also characterized the role of the human homologue Cym1 (PreP) and consequences of defective PreP presequence turnover in human cells (Aim 3). Together with clinicians we identified and described the first patients with mutations in the catalytic subunit of MPP and showed that the patients have defects in functions of iron-sulfur cluster containing proteins (Aim 2). Finally, as proposed in Aim 1 we thoroughly characterized the unfolded protein response that protects yeast upon defects in MPP and identified two key protective mechanisms on the molecular level: The maintenance of mitochondrial gene expression by the transcription factor Rox1 and the role of protein import and lipid remodelling to maintain protein import upon mitochondrial stress conditions.

Projektbezogene Publikationen (Auswahl)

  • (2016) MIPEP recessive variants cause a syndrome of left ventricular non-compaction, hypotonia, and infantile death. Genome Med. 8: 106
    Eldomery MK, Akdemir ZC, Vögtle FN, Charng WL, Mulica P, Rosenfeld JA, Gambin T, Gu S, Burrage LC, Al Shamsi A, Penney S, Jhangiani SN, Zimmerman HH, Muzny DM, Wang X, Tang J, Medikonda R, Ramachandran PV, Wong LJ, Boerwinkle E, Gibbs RA, Eng CM, Lalani SR, Hertecant J, Rodenburg RJ, Abdul- Rahman OA, Yang Y, Xia F, Wang MC, Lupski JR, Meisinger C, Sutton VR
    (Siehe online unter https://doi.org/10.1186/s13073-016-0360-6)
  • (2017) Landscape of submitochondrial protein distribution. Nat Commun. 8: 290
    Vögtle FN, Burkhart JM, Gonczarowska-Jorge H, Kücükköse C, Taskin AA, Kopczynski D, Ahrends R, Mossmann D, Sickmann A, Zahedi RP, Meisinger C
    (Siehe online unter https://doi.org/10.1038/s41467-017-00359-0)
  • (2017) The novel mitochondrial matrix protease Ste23 is required for efficient presequence degradation and processing. Mol. Biol. Cell 28: 997-1002
    Taskin AA, Kücükköse C, Burger N, Mossmann D, Meisinger C, Vögtle FN
    (Siehe online unter https://doi.org/10.1091/mbc.e16-10-0732)
  • (2018) Mutations in PMPCB Encoding the Catalytic Subunit of the Mitochondrial Presequence Protease Cause Neurodegeneration in Early Childhood. Am J Hum Genet. 102: 557-573
    Vögtle FN, Brändl B, Larson A, Pendziwiat M, Friederich MW, White SM, Basinger A, Kücükköse C, Muhle H, Jähn JA, Keminer O, Helbig KL, Delto CF, 1 Myketin L, Mossmann D, Burger N, Miyake N, Burnett A, van Baalen A, Lovell MA, Matsumoto N, Walsh M, Yu HC, Shinde DN, Stephani U, Van Hove JLK, Müller FJ, Helbig I
    (Siehe online unter https://doi.org/10.1016/j.ajhg.2018.02.014)
  • (2018) The Enzymatic Core of the Parkinson's Disease- Associated Protein LRRK2 Impairs Mitochondrial Biogenesis in Aging Yeast. Front. Mol. Neurosci. 11: 205
    Aufschnaiter A, Kohler V, Walter C, Tosal-Castano S, Habernig L, Wolinski H, Keller W, Vögtle FN, Büttner S
    (Siehe online unter https://doi.org/10.3389/fnmol.2018.00205)
  • (2020) An Early mtUPR: Redistribution of the Nuclear Transcription Factor Rox1 to Mitochondria Protects against Intramitochondrial Proteotoxic Aggregates. Mol. Cell 77: 180-188
    Poveda-Huertes D, Matic S, Marada A, Habernig L, Licheva M, Myketin L, Gilsbach R, Tosal-Castano S, Papinski D, Mulica P, Kretz O, Kücükköse C, Taskin AA, Hein L, Kraft C, Büttner S, Meisinger C, Vögtle F
    (Siehe online unter https://doi.org/10.1016/j.molcel.2019.09.026)
  • (2021) Functional coupling of presequence processing and degradation in human mitochondria. FEBS J. 288: 600-613
    Kücükköse C, Taskin AA, Marada A, Brummer T, Dennerlein S, Vögtle FN
    (Siehe online unter https://doi.org/10.1111/febs.15358)
  • (2021) Global kinome profiling reveals DYRK1A as critical activator of the human mitochondrial import machinery. Nat. Commun. 12: 4284
    Walter C, Marada A, Suhm T, Ernsberger R, Muders V, Kücükköse C, Sánchez- Martín P, Hu Z, Aich A, Loroch S, Solari FA, Poveda-Huertes D, Schwierzok A, Pommerening H, Matic S, Brix J, Sickmann A, Kraft C, Dengjel J, Dennerlein S, Brummer T, Vögtle FN, Meisinger C
    (Siehe online unter https://doi.org/10.1038/s41467-021-24426-9)
  • (2021) Increased mitochondrial protein import and cardiolipin remodelling upon early mtUPR. PLoS Genet. 17: e1009664
    Poveda-Huertes D, Taskin AA, Dhaouadi I, Myketin L, Marada A, Habernig L, Büttner S, Vögtle FN
    (Siehe online unter https://doi.org/10.1371/journal.pgen.1009664)
  • (2021) Open questions on the mitochondrial unfolded protein response. FEBS J. 288: 2856-2869
    Vögtle FN
    (Siehe online unter https://doi.org/10.1111/febs.15569)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung